• Login
    View Item 
    •   Athenaeum Home
    • BioMed Central Open Access Articles
    • Open Access Articles by UGA Faculty
    • View Item
    •   Athenaeum Home
    • BioMed Central Open Access Articles
    • Open Access Articles by UGA Faculty
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Alleviation of carbon catabolite repression in Enterobacter aerogenes for efficient utilization of sugarcane molasses for 2,3-butanediol production

    Thumbnail
    View/Open
    13068_2015_Article_290.pdf (1.960Mb)
    Date
    2015-07-31
    Author
    Jung, Moo-Young
    Jung, Hwi-Min
    Lee, Jinwon
    Oh, Min-Kyu
    Metadata
    Show full item record
    Abstract
    Abstract Background Due to its cost-effectiveness and rich sugar composition, sugarcane molasses is considered to be a promising carbon source for biorefinery. However, the sugar mixture in sugarcane molasses is not consumed as efficiently as glucose in microbial fermentation due to complex interactions among their utilizing pathways, such as carbon catabolite repression (CCR). In this study, 2,3-butanediol-producing Enterobacter aerogenes was engineered to alleviate CCR and improve sugar utilization by modulating its carbon preference. Results The gene encoding catabolite repressor/activator (Cra) was deleted in the genome of E. aerogenes to increase the fructose consumption rate. However, the deletion mutation repressed sucrose utilization, resulting in the accumulation of sucrose in the fermentation medium. Cra regulation on expression of the scrAB operon involved in sucrose catabolism was verified by reverse transcription and real-time PCR, and the efficiency of sucrose utilization was restored by disrupting the scrR gene and overexpressing the scrAB operon. In addition, overexpression of the ptsG gene involved in glucose utilization enhanced the glucose preference among mixed sugars, which relieved glucose accumulation in fed-batch fermentation. In fed-batch fermentation using sugarcane molasses, the maximum titer of 2,3-butanediol production by the mutant reached 140.0 g/L at 54 h, which was by far the highest titer of 2,3-butanediol with E. aerogenes achieved through genetic engineering. Conclusions We have developed genetically engineered E. aerogenes as a 2,3-butanediol producer that efficiently utilizes sugarcane molasses. The fermentation efficiency was dramatically improved by the alleviation of CCR and modulation of carbon preference. These results offer a metabolic engineering approach for achieving highly efficient utilization of mixed sugars for the biorefinery industry.
    URI
    http://dx.doi.org/10.1186/s13068-015-0290-3
    http://hdl.handle.net/10724/32040
    Collections
    • Open Access Articles by UGA Faculty

    About Athenaeum | Contact Us | Send Feedback
     

     

    Browse

    All of AthenaeumCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    About Athenaeum | Contact Us | Send Feedback