Show simple item record

dc.contributor.authorKuhring, Mathias
dc.contributor.authorDabrowski, Piotr W
dc.contributor.authorPiro, Vitor C
dc.contributor.authorNitsche, Andreas
dc.contributor.authorRenard, Bernhard Y
dc.date.accessioned2015-09-01T18:19:20Z
dc.date.available2015-09-01T18:19:20Z
dc.date.issued2015-07-30
dc.identifier.citationBMC Bioinformatics. 2015 Jul 30;16(1):240
dc.identifier.urihttp://dx.doi.org/10.1186/s12859-015-0644-7
dc.identifier.urihttp://hdl.handle.net/10724/31993
dc.description.abstractAbstract Background Evaluating the quality and reliability of a de novo assembly and of single contigs in particular is challenging since commonly a ground truth is not readily available and numerous factors may influence results. Currently available procedures provide assembly scores but lack a comparative quality ranking of contigs within an assembly. Results We present SuRankCo, which relies on a machine learning approach to predict quality scores for contigs and to enable the ranking of contigs within an assembly. The result is a sorted contig set which allows selective contig usage in downstream analysis. Benchmarking on datasets with known ground truth shows promising sensitivity and specificity and favorable comparison to existing methodology. Conclusions SuRankCo analyzes the reliability of de novo assemblies on the contig level and thereby allows quality control and ranking prior to further downstream and validation experiments.
dc.titleSuRankCo: supervised ranking of contigs in de novo assemblies
dc.typeJournal Article
dc.date.updated2015-07-30T04:17:51Z
dc.language.rfc3066en
dc.rights.holderKuhring et al.


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record