• Login
    View Item 
    •   Athenaeum Home
    • BioMed Central Open Access Articles
    • Open Access Articles by UGA Faculty
    • View Item
    •   Athenaeum Home
    • BioMed Central Open Access Articles
    • Open Access Articles by UGA Faculty
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Evolutionary insights from de novo transcriptome assembly and SNP discovery in California white oaks

    Thumbnail
    View/Open
    12864_2015_Article_1761.pdf (1.976Mb)
    Date
    2015-07-28
    Author
    Cokus, Shawn J
    Gugger, Paul F
    Sork, Victoria L
    Metadata
    Show full item record
    Abstract
    Abstract Background Reference transcriptomes provide valuable resources for understanding evolution within and among species. We de novo assembled and annotated a reference transcriptome for Quercus lobata and Q. garryana and identified single-nucleotide polymorphisms (SNPs) to provide resources for forest genomicists studying this ecologically and economically important genus. We further performed preliminary analyses of genes important in interspecific divergent (positive) selection that might explain ecological differences among species, estimating rates of nonsynonymous to synonymous substitutions (d N/d S) and Fay and Wu’s H. Functional classes of genes were tested for unusually high d N/d S or low H consistent with divergent positive selection. Results Our draft transcriptome is among the most complete for oaks, including 83,644 contigs (23,329 ≥ 1 kbp), 14,898 complete and 13,778 partial gene models, and functional annotations for 9,431 Arabidopsis orthologs and 19,365 contigs with Pfam hits. We identified 1.7 million possible sequence variants including 1.1 million high-quality diallelic SNPs — among the largest sets identified in any tree. 11 of 18 functional categories with significantly elevated d N/d S are involved in disease response, including 50+ genes with d N/d S > 1. Other high-d N/d S genes are involved in biotic response, flowering and growth, or regulatory processes. In contrast, median d N/d S was low (0.22), suggesting that purifying selection influences most genes. No functional categories have unusually low H. Conclusions These results offer preliminary support for the hypothesis that divergent selection at pathogen resistance are important factors in species divergence in these hybridizing California oaks. Our transcriptome provides a solid foundation for future studies of gene expression, natural selection, and speciation in Quercus.
    URI
    http://dx.doi.org/10.1186/s12864-015-1761-4
    http://hdl.handle.net/10724/31970
    Collections
    • Open Access Articles by UGA Faculty

    About Athenaeum | Contact Us | Send Feedback
     

     

    Browse

    All of AthenaeumCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    About Athenaeum | Contact Us | Send Feedback