• Login
    View Item 
    •   Athenaeum Home
    • BioMed Central Open Access Articles
    • Open Access Articles by UGA Faculty
    • View Item
    •   Athenaeum Home
    • BioMed Central Open Access Articles
    • Open Access Articles by UGA Faculty
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Medium-chain acyl-CoA dehydrogenase deficiency associated with a novel splice mutation in the ACADM gene missed by newborn screening

    Thumbnail
    View/Open
    12881_2015_Article_199.pdf (1.360Mb)
    Date
    2015-07-30
    Author
    Grünert, Sarah C
    Wehrle, A.
    Villavicencio-Lorini, P.
    Lausch, E.
    Vetter, B.
    Schwab, K. O
    Tucci, S.
    Spiekerkoetter, U.
    Metadata
    Show full item record
    Abstract
    Abstract Background Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is the most common disorder of mitochondrial fatty acid β-oxidation and a target disease of newborn screening in many countries. Case presentation We report on two siblings with mild MCAD deficiency associated with a novel splice site mutation in the ACADM gene. The younger sibling was detected by newborn screening, while the older sister was missed, but diagnosed later on by genetic family testing. Both children were found to be compound heterozygous for the common c.985A > G (p.K329E) mutation and a novel splice site mutation, c.600-18G > A, in the ACADM gene. To determine the biological consequence of the c.600-18G > A mutation putative missplicing was investigated at RNA level in granulocytes and monocytes of one of the patients. The splice site mutation was shown to lead to partial missplicing of the ACADM pre-mRNA. Of three detected transcripts two result in truncated, non-functional MCAD proteins as reflected by the reduced octanoyl-CoA oxidation rate in both patients. In one patient a decrease of the octanoyl-CoA oxidation rate was found during a febrile infection indicating that missplicing may be temperature-sensitive. Conclusions Our data indicate that the c.600-18G > A variant activates a cryptic splice site, which competes with the natural splice site. Due to only partial missplicing sufficient functional MCAD protein remains to result in mild MCADD that may be missed by newborn screening.
    URI
    http://dx.doi.org/10.1186/s12881-015-0199-5
    http://hdl.handle.net/10724/31965
    Collections
    • Open Access Articles by UGA Faculty

    About Athenaeum | Contact Us | Send Feedback
     

     

    Browse

    All of AthenaeumCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    About Athenaeum | Contact Us | Send Feedback