• Login
    View Item 
    •   Athenaeum Home
    • BioMed Central Open Access Articles
    • Open Access Articles by UGA Faculty
    • View Item
    •   Athenaeum Home
    • BioMed Central Open Access Articles
    • Open Access Articles by UGA Faculty
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The public health impact of malaria vaccine RTS,S in malaria endemic Africa: country-specific predictions using 18 month follow-up Phase III data and simulation models

    Thumbnail
    View/Open
    12916_2015_Article_408.pdf (1.464Mb)
    Date
    2015-07-29
    Author
    Penny, Melissa A
    Galactionova, Katya
    Tarantino, Michael
    Tanner, Marcel
    Smith, Thomas A
    Metadata
    Show full item record
    Abstract
    Abstract Background The RTS,S/AS01 malaria vaccine candidate recently completed Phase III trials in 11 African sites. Recommendations for its deployment will partly depend on predictions of public health impact in endemic countries. Previous predictions of these used only limited information on underlying vaccine properties and have not considered country-specific contextual data. Methods Each Phase III trial cohort was simulated explicitly using an ensemble of individual-based stochastic models, and many hypothetical vaccine profiles. The true profile was estimated by Bayesian fitting of these models to the site- and time-specific incidence of clinical malaria in both trial arms over 18 months of follow-up. Health impacts of implementation via two vaccine schedules in 43 endemic sub-Saharan African countries, using country-specific prevalence, access to care, immunisation coverage and demography data, were predicted via weighted averaging over many simulations. Results The efficacy against infection of three doses of vaccine was initially approximately 65 % (when immunising 6–12 week old infants) and 80 % (children 5–17 months old), with a 1 year half-life (exponential decay). Either schedule will avert substantial disease, but predicted impact strongly depends on the decay rate of vaccine effects and average transmission intensity. Conclusions For the first time Phase III site- and time-specific data were available to estimate both the underlying profile of RTS,S/AS01 and likely country-specific health impacts. Initial efficacy will probably be high, but decay rapidly. Adding RTS,S to existing control programs, assuming continuation of current levels of malaria exposure and of health system performance, will potentially avert 100–580 malaria deaths and 45,000 to 80,000 clinical episodes per 100,000 fully vaccinated children over an initial 10-year phase.
    URI
    http://dx.doi.org/10.1186/s12916-015-0408-2
    http://hdl.handle.net/10724/31904
    Collections
    • Open Access Articles by UGA Faculty

    About Athenaeum | Contact Us | Send Feedback
     

     

    Browse

    All of AthenaeumCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    About Athenaeum | Contact Us | Send Feedback