• Login
    View Item 
    •   Athenaeum Home
    • BioMed Central Open Access Articles
    • Open Access Articles by UGA Faculty
    • View Item
    •   Athenaeum Home
    • BioMed Central Open Access Articles
    • Open Access Articles by UGA Faculty
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The remaining dentin thickness investigation of the attempt to remove broken instrument from mesiobuccal canals of maxillary first molars with virtual simulation technique

    Thumbnail
    View/Open
    12903_2015_Article_75.pdf (2.245Mb)
    Date
    2015-07-28
    Author
    Yang, Qian
    Cheung, Gary S
    Shen, Ya
    Huang, Dingming
    Zhou, Xuedong
    Gao, Yuan
    Metadata
    Show full item record
    Abstract
    Abstract Background To investigate differences in the estimated minimum remaining dentin thickness (RDT) between periapical radiographs using the paralleling and parallax technique, after simulated removal of broken instrument from the mesiobuccal (MB) canal of maxillary first molar in virtual simulation model. The 3D measurement was taken as the standard for comparison. Methods Thirty-six maxillary first molars were scanned by micro-CT and reconstructed as 3-dimensional (3D) model. A virtual fragment of an instrument was created within the MB canal in software. Removal of the broken instrument was simulated in both the 3D and 2D dataset. Then, the models of all specimens were submitted to 2D and 3D measurements for the lowest (RDT) value in each. Differences in the values between the paralleling and parallax radiographic technique and the 3D-RDT value were analyzed with two-way Analysis of Variance. The Intra-class Correlation Coefficient (ICC) was used to assess consistency of the RDT measurements between the two periapical radiographic and techniques and 3D analysis. Results There was significant difference between RDT value obtained from the paralleling technique and 3D-RDT. There were no differences between RDT obtained from parallax (angled) technique and 3D-RDT. The ICC of RDT values between paralleling technique and 3D measurement were lower than 0.75. ICC between angled radiographs and 3D technique was close to 0.75. The optimal horizontal angle for the parallax technique was about 21°. Conclusions The virtual simulation technique can provide valuable insight into the benefit/risk analysis before removal of a broken instrument. Parallel radiographs overestimate the actual remain dentin thickness in mesiobuccal canals of maxillary first molars, whereas the parallel technique would give a closer estimate to the actual thickness at a projection angle of about 21°.
    URI
    http://dx.doi.org/10.1186/s12903-015-0075-x
    http://hdl.handle.net/10724/31855
    Collections
    • Open Access Articles by UGA Faculty

    About Athenaeum | Contact Us | Send Feedback
     

     

    Browse

    All of AthenaeumCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    About Athenaeum | Contact Us | Send Feedback