• Login
    View Item 
    •   Athenaeum Home
    • BioMed Central Open Access Articles
    • Open Access Articles by UGA Faculty
    • View Item
    •   Athenaeum Home
    • BioMed Central Open Access Articles
    • Open Access Articles by UGA Faculty
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Downregulation of dystroglycan glycosyltransferases LARGE2 and ISPD associate with increased mortality in clear cell renal cell carcinoma

    Thumbnail
    View/Open
    12943_2015_Article_416.pdf (2.855Mb)
    Date
    2015-07-30
    Author
    Miller, Michael R
    Ma, Deqin
    Schappet, James
    Breheny, Patrick
    Mott, Sarah L
    Bannick, Nadine
    Askeland, Eric
    Brown, James
    Henry, Michael D
    Metadata
    Show full item record
    Abstract
    Abstract Background Dystroglycan (DG) is a cell-surface laminin receptor that links the cytoskeleton to the extracellular matrix in a variety of epithelial tissues. Its function as a matrix receptor requires extensive glycosylation of its extracellular subunit αDG, which involves at least 13 distinct genes. Prior work has shown loss of αDG glycosylation in an assortment of carcinomas, including clear cell renal cell carcinoma (ccRCC) though the cause (s) and functional consequences of this loss are still unclear. Methods Using The Cancer Genome Atlas (TCGA) database, we analyzed the DG glycosylation pathway to identify changes in mRNA expression and correlation with clinical outcomes. We validated our findings with a cohort of 65 patients treated with radical nephrectomy by analyzing DG glycosylation via immunohistochemistry and gene expression via qRT-PCR. Results Analysis of TCGA database revealed frequent dysregulation of a subset of DG glycosyltransferases. Most notably, there was a frequent, significant downregulation of GYLTL1B (LARGE2) and ISPD. DG glycosylation is frequently impaired in ccRCC patient samples and most strongly associates with downregulation of GYLTL1B. Conclusions Reduced levels of GYLTL1B and ISPD mRNA associated with increased patient mortality and are the likely cause of αDG hypoglycosylation in ccRCC.
    URI
    http://dx.doi.org/10.1186/s12943-015-0416-z
    http://hdl.handle.net/10724/31718
    Collections
    • Open Access Articles by UGA Faculty

    About Athenaeum | Contact Us | Send Feedback
     

     

    Browse

    All of AthenaeumCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    About Athenaeum | Contact Us | Send Feedback