Show simple item record

dc.contributor.authorJennings, Emily Nicole
dc.date.accessioned2014-09-25T04:30:16Z
dc.date.available2014-09-25T04:30:16Z
dc.date.issued2014-05
dc.identifier.otherjennings_emily_n_201405_ma
dc.identifier.urihttp://purl.galileo.usg.edu/uga_etd/jennings_emily_n_201405_ma
dc.identifier.urihttp://hdl.handle.net/10724/30487
dc.description.abstractLet $sigma(n)=sum_{d|n} d$ denote the sum-of-divisors function. Davenport [2] showed $n/sigma(n)$ has a continuous distribution function. That is, $D(u):=lim_{xtoinfty}frac{1}{x} sum_{substack{nleq x n/sigma(n) leq u}} 1$ exists for all $uin[0,1]$ and is a continuous function of $u$. Jennings, Pollack, and Thompson [5] established an analogue of Davenport's theorem. They defined the analogous distribution function as $tilde{D}_f(u):=lim_{xtoinfty}frac{1}{S(f;x)} sum_{substack{nleq x n/sigma(n) leq u}} f(n)$, where $S(f;x):=sum_{nleq x} f(n)$. They showed that for a certain class of real-valued multiplicative functions $f$, $tilde{D}_f(u)$ exists for all $uin[ 0,1]$ and is both continuous and strictly increasing. In this paper, we further generalize the result by replacing the function $n/sigma(n)$ with certain other multiplicative functions $g(n)$. Hence we define $tilde{D}_{f,g}(u):=lim_{xtoinfty}frac{1}{S(f;x)} sum_{substack{nleq x g(n) leq u}} f(n)$. We show $tilde{D}_{f,g}(u)$ exists for all $u$ in $[0,1]$ and is a continuous function of $u$. Furthermore, if $S:={ nin mathbb{N} : f(n) >0}$, then $tilde{D}_{f,g}(u)$ is strictly increasing on the interior of the closure of $g(S)$.
dc.languageeng
dc.publisheruga
dc.rightspublic
dc.subjectdistribution function
dc.subjectWirsing’s theorem
dc.subjectErdos--Wintner theorem
dc.subjectmean values
dc.titleOn the existence of certain distribution functions
dc.typeThesis
dc.description.degreeMA
dc.description.departmentMathematics
dc.description.majorMathematics
dc.description.advisorPaul Pollack
dc.description.committeePaul Pollack
dc.description.committeeJingzhi Tie
dc.description.committeeAngela Gibney


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record