Show simple item record

dc.contributor.authorNunley, Laura Michelle
dc.date.accessioned2014-03-04T18:29:10Z
dc.date.available2014-03-04T18:29:10Z
dc.date.issued2010-05
dc.identifier.othernunley_laura_m_201005_ma
dc.identifier.urihttp://purl.galileo.usg.edu/uga_etd/nunley_laura_m_201005_ma
dc.identifier.urihttp://hdl.handle.net/10724/26439
dc.description.abstractIn this paper, the reader will be introduced to quadratic forms, lattices, and the Legendre Equation. We will extend Legendre’s equation to multiple variables, and in the cases where n >= 4, attempt to extend Cochrane and Mitchell’s proof of the existence of solutions. It will be proven that the proof does not hold for more than three variables.
dc.languageeng
dc.publisheruga
dc.rightspublic
dc.subjectQuadratic forms
dc.subjectLegendre equation
dc.subjectIntegral Lattices
dc.titleGeometry of numbers approach to small solutions to the extended Legendre equation
dc.typeThesis
dc.description.degreeMA
dc.description.departmentMathematics
dc.description.majorMathematics
dc.description.advisorPeter Clark
dc.description.committeePeter Clark
dc.description.committeeJonathan Hanke
dc.description.committeeEdward Azoff


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record