Show simple item record

dc.contributor.authorEttinger, Bree danielle
dc.date.accessioned2014-03-03T21:10:00Z
dc.date.available2014-03-03T21:10:00Z
dc.date.issued2004-05
dc.identifier.otherettinger_bree_d_200405_ma
dc.identifier.urihttp://purl.galileo.usg.edu/uga_etd/ettinger_bree_d_200405_ma
dc.identifier.urihttp://hdl.handle.net/10724/21489
dc.description.abstractTime Scale theory unifies and extends real and discrete analysis. Euler’s Method is an algorithm for constructing a linear approximation to the initial value problem dy/dt = f(t, y) a < t < b and y(a) = a . Although Euler’s Method is seldom used in practice, it lays the ground work for developing higher order approximation schemes. In this thesis, we use Euler’s Method to develop a numerical integration scheme for time scales. First we explore our numerical integration scheme on an isolated time scale, and then extend our results to an arbitrary time scale. We also give error approximations for these schemes as well as examples.
dc.languageeng
dc.publisheruga
dc.rightspublic
dc.subjectTime scales
dc.subjectEuler\'s Method
dc.subjectNumerical Integration
dc.titleNumerical integration for time scales
dc.typeThesis
dc.description.degreeMA
dc.description.departmentMathematics
dc.description.majorMathematics
dc.description.advisorEd Azoff
dc.description.committeeEd Azoff
dc.description.committeeMalcom Adams
dc.description.committeeJoan Hoffacker
dc.description.committeePaul Wenston


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record