• Login
    View Item 
    •   Athenaeum Home
    • BioMed Central Open Access Articles
    • Open Access Articles by UGA Faculty
    • View Item
    •   Athenaeum Home
    • BioMed Central Open Access Articles
    • Open Access Articles by UGA Faculty
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Mitochondrial DNA suggests at least 11 origins of parasitism in angiosperms and reveals genomic chimerism in parasitic plants

    Thumbnail
    View/Open
    1471-2148-7-248.xml (111.1Kb)
    1471-2148-7-248.pdf (3.575Mb)
    1471-2148-7-248-S2.PDF (55.20Kb)
    1471-2148-7-248-S1.PDF (70.00Kb)
    Date
    2007-12-21
    Author
    Barkman, Todd J
    McNeal, Joel R
    Lim, Seok-Hong
    Coat, Gwen
    Croom, Henrietta B
    Young, Nelson D
    dePamphilis, Claude W
    Metadata
    Show full item record
    Abstract
    Abstract Background Some of the most difficult phylogenetic questions in evolutionary biology involve identification of the free-living relatives of parasitic organisms, particularly those of parasitic flowering plants. Consequently, the number of origins of parasitism and the phylogenetic distribution of the heterotrophic lifestyle among angiosperm lineages is unclear. Results Here we report the results of a phylogenetic analysis of 102 species of seed plants designed to infer the position of all haustorial parasitic angiosperm lineages using three mitochondrial genes: atp1, coxI, and matR. Overall, the mtDNA phylogeny agrees with independent studies in terms of non-parasitic plant relationships and reveals at least 11 independent origins of parasitism in angiosperms, eight of which consist entirely of holoparasitic species that lack photosynthetic ability. From these results, it can be inferred that modern-day parasites have disproportionately evolved in certain lineages and that the endoparasitic habit has arisen by convergence in four clades. In addition, reduced taxon, single gene analyses revealed multiple horizontal transfers of atp1 from host to parasite lineage, suggesting that parasites may be important vectors of horizontal gene transfer in angiosperms. Furthermore, in Pilostyles we show evidence for a recent host-to-parasite atp1 transfer based on a chimeric gene sequence that indicates multiple historical xenologous gene acquisitions have occurred in this endoparasite. Finally, the phylogenetic relationships inferred for parasites indicate that the origins of parasitism in angiosperms are strongly correlated with horizontal acquisitions of the invasive coxI group I intron. Conclusion Collectively, these results indicate that the parasitic lifestyle has arisen repeatedly in angiosperm evolutionary history and results in increasing parasite genomic chimerism over time.
    URI
    http://dx.doi.org/10.1186/1471-2148-7-248
    http://hdl.handle.net/10724/19719
    Collections
    • Open Access Articles by UGA Faculty

    About Athenaeum | Contact Us | Send Feedback
     

     

    Browse

    All of AthenaeumCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    About Athenaeum | Contact Us | Send Feedback