Show simple item record

dc.contributor.authorRonning, Catherine M
dc.contributor.authorLosada, Liliana
dc.contributor.authorBrinkac, Lauren
dc.contributor.authorInman, Jason
dc.contributor.authorUlrich, Ricky L
dc.contributor.authorSchell, Mark
dc.contributor.authorNierman, William C
dc.contributor.authorDeShazer, David
dc.date.accessioned2013-06-12T15:03:17Z
dc.date.available2013-06-12T15:03:17Z
dc.date.issued2010-07-28
dc.identifier.citationBMC Microbiology. 2010 Jul 28;10(1):202
dc.identifier.urihttp://dx.doi.org/10.1186/1471-2180-10-202
dc.identifier.urihttp://hdl.handle.net/10724/19668
dc.description.abstractAbstract Background Burkholderia species exhibit enormous phenotypic diversity, ranging from the nonpathogenic, soil- and water-inhabiting Burkholderia thailandensis to the virulent, host-adapted mammalian pathogen B. mallei. Genomic diversity is evident within Burkholderia species as well. Individual isolates of Burkholderia pseudomallei and B. thailandensis, for example, carry a variety of strain-specific genomic islands (GIs), including putative pathogenicity and metabolic islands, prophage-like islands, and prophages. These GIs may provide some strains with a competitive advantage in the environment and/or in the host relative to other strains. Results Here we present the results of analysis of 37 prophages, putative prophages, and prophage-like elements from six different Burkholderia species. Five of these were spontaneously induced to form bacteriophage particles from B. pseudomallei and B. thailandensis strains and were isolated and fully sequenced; 24 were computationally predicted in sequenced Burkholderia genomes; and eight are previously characterized prophages or prophage-like elements. The results reveal numerous differences in both genome structure and gene content among elements derived from different species as well as from strains within species, due in part to the incorporation of additional DNA, or 'morons' into the prophage genomes. Implications for pathogenicity are also discussed. Lastly, RNAseq analysis of gene expression showed that many of the genes in ϕ1026b that appear to contribute to phage and lysogen fitness were expressed independently of the phage structural and replication genes. Conclusions This study provides the first estimate of the relative contribution of prophages to the vast phenotypic diversity found among the Burkholderiae.
dc.titleGenetic and phenotypic diversity in Burkholderia: contributions by prophage and phage-like elements
dc.typeJournal Article
dc.date.updated2013-06-07T17:03:19Z
dc.description.versionPeer Reviewed
dc.language.rfc3066en
dc.rights.holderCatherine M Ronning et al.; licensee BioMed Central Ltd.


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record