Comparison of 1950s to the 2012 High Yielding Broiler

K.E. Collins, B.H. Kiepper, C.W. Ritz, B.L. McLendon, and J.L. Wilson
The University of Georgia
Poultry Science Department

Objective

Gain a new understanding of the history and changes in the birds you process

Changes since the 1950s

• Genetics: High yielding broiler
• ~6 weeks to market age
• 1950s: 12 weeks—double the time!

Unique Tool to see the 1950 meat-type chicken:
The Athens Canadian Random Bred (ACRB) Control Population

The Athens Canadian Random Bred

• Ottawa Meat Control Strain
• Developed in 1955
• White Cornish, Wyandotte
• Single, pea, rose, walnut combs

The Athens Canadian Random Bred

• Southern Regional Poultry Breeding Project started in 1947
• Athens-central testing station
• Southern Regional Poultry Genetics Laboratory in 1955
• Population arrived in Athens in 1958

Today’s ACRB
Parent Stock

Comparison

Methods

• Reared birds
• Processed birds at 6, 8, and 10 weeks

• Weighed everything!
 – Live birds, after bleedout, New York Dress
 – Parts
 – Organs (heart, liver, gizzard, lungs, all other viscera)
ACRB Cobb 500

Very Different Mentalities

1 Week

2 Weeks

4 Weeks

5 Weeks

9/26/2012
Mortality by Week of Growout

- Total 10 Week Mortality
 - 9.3% Cobb
 - 0% ACRB

- 6 Week Mortality
 - 4.1% Cobb

Processing Details

- Bird electrically stunned (25V DC, 25V AC)
- Neck cut
- Bleed out for 120 seconds
- Carcass scalded at 60°C Hard Scald for 120 seconds
- Defeathered in picker
- Eviscerated by hand-parts weighed
- Static chiller for 3 hours
- Hung for 10 minutes before cutup
Weeks | Cobb Always Outweighed ACRB
--|----------------------------------
10 | **Cobb Live Wt/ACRB Live Wt**
 | **Week** | **Males** | **Females**
6 | 4.8 x’s | 4.7 x’s |
8 | 3.9 x’s | 4.2 x’s |
10 | 3.6 x’s | 3.8 x’s |

Take Percentage
(Part Weight/Live Fasted Weight) * 100

Compared within each week/age
Breast Muscle p values <.0001 at all ages

<table>
<thead>
<tr>
<th></th>
<th>ACRB</th>
<th>Cobb</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. Major</td>
<td>9.6%</td>
<td>20.7%</td>
</tr>
<tr>
<td>P. Minor</td>
<td>2.9%</td>
<td>4.3%</td>
</tr>
</tbody>
</table>

Cobb had larger leg muscles

<table>
<thead>
<tr>
<th></th>
<th>ACRB</th>
<th>Cobb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thigh</td>
<td>12.0%</td>
<td>13.0%</td>
</tr>
<tr>
<td>Deboned Thigh</td>
<td>9.2%</td>
<td>11.4%</td>
</tr>
</tbody>
</table>

Consistent ACRB Advantages

<table>
<thead>
<tr>
<th>% of Body Weight</th>
<th>ACRB</th>
<th>Cobb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feet</td>
<td>4.3%</td>
<td>3.0%</td>
</tr>
<tr>
<td>Head</td>
<td>4.3%</td>
<td>2.1%</td>
</tr>
<tr>
<td>Preen Gland</td>
<td>0.2%</td>
<td>0.1%</td>
</tr>
<tr>
<td>Liver</td>
<td>1.7%</td>
<td>1.4%</td>
</tr>
<tr>
<td>Gizzard</td>
<td>4.3%</td>
<td>1.8%</td>
</tr>
<tr>
<td>Viscera</td>
<td>5.8%</td>
<td>4.0%</td>
</tr>
<tr>
<td>Wings</td>
<td>9.7%</td>
<td>7.8%</td>
</tr>
<tr>
<td>Feathers</td>
<td>8.0%</td>
<td>3.7%</td>
</tr>
<tr>
<td>Water Uptake</td>
<td>3.5%</td>
<td>2.4%</td>
</tr>
</tbody>
</table>

Fat Pad p values <.0001 at all ages

<table>
<thead>
<tr>
<th></th>
<th>ACRB</th>
<th>Cobb</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7%</td>
<td>1.6%</td>
<td></td>
</tr>
</tbody>
</table>

Lung Difference

Differences were highly significant with p values <.0001 at all ages
Blood

No difference in blood until 10 weeks

<table>
<thead>
<tr>
<th>ACRB</th>
<th>Cobb</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.6%</td>
<td>2.3%</td>
</tr>
</tbody>
</table>

p value 0.0498

Reason for differential mortality

Summary

- Modern High-yielding broilers weigh 3.6-4.8 times as much as broilers of 55+ years ago
- Modern broilers have much more muscle—especially breast meat
- Despite the increase in muscle, supply organs (heart and lungs) are actually smaller

Comparison of 1950s to the 2012 High Yielding Broiler

Katie Collins
Brian Kiepper
Casey Ritz
Beverly McLendon
Jeanna Wilson