New Pepper Disease

David Langston
Extension Vegetable Pathologist - UGA

We have had several reports of pepper anthracnose, a relatively new pepper disease for Georgia, in both spring and fall pepper crops this year. This disease may be caused by two fungi, *Colletotrichum capsici* and *C. piperatum*. Symptoms usually appear on fruit as sunken, circular lesions that contain either a black (*C. capsici*, Fig. 1) or pink (*C. piperatum*, Fig. 2) sporulation.

The fungus can be seedborne and in debris from diseased plants. Once infected, symptoms can appear on pepper within 5 days. Splashing water is the primary mode of pathogen dispersal. The fungus causes the most damage under humid (>95% RH), warm (80 - 90°F) conditions.

Control measures include using disease-free seed and plants, avoid poorly drained soils and overwatering, and spraying with copper tank mixed with a labeled maneb product. Differences in varietal susceptibility have been noted but no hard data have been developed. Under favorable conditions this disease is extremely difficult to control with currently labeled fungicides.
Vegetable Greenhouse Space in Georgia

George Boyhan
Extension Horticulurist - UGA

There is nearly 2.5 million square feet of greenhouse space devoted to vegetable transplant production and vegetable production in Georgia. Only 11% of this space is devoted to vegetable production with the remainder devoted to transplants. Over 80% of the transplant greenhouse space is located in four counties, Cook, Colquitt, Paulding, and Tift. Three of the four counties are located in southwest Georgia in the center of the vegetable production area. Paulding County is located west of Atlanta. The total square feet of greenhouse space for vegetable production is 240,850. It should be noted that 200,000 square feet of this are also listed for transplant production so the total number of square feet devoted exclusively to vegetable production is considerably less.

Figure 1 shows the breakdown of greenhouse square feet by county. Striped counties have greenhouse vegetable production. In the cases Paulding and Taylor Counties this includes both transplant and vegetable production.

GFVGA Extension Award Approaches

William Terry Kelley
Extension Horticulurist - UGA

In 1998 the Georgia Fruit and Vegetable Growers Association established an award program to recognize and express appreciation to UGA Cooperative Extension Service personnel that have excelled in supporting and developing the fruit and vegetable industries in Georgia. The individual selected for the award receives a $400.00 cash award and is recognized at both the Georgia Association of County Agricultural Agents Annual Meeting and the GFVGA Winter Conference in Savannah. The previous winners were Tim Flanders-Grady County (1998), Tim Lawson-Sumter County (1999) and Larry Corbett-Echols County (2000).

Nominations must be made by a GFVGA “grower” member. If you have a colleague that you think is deserving of this award, please take a moment to contact a grower member of the GFVGA and request that they nominate that person. It is important to recognize those individuals who have made significant contributions through extension programs to the fruit and vegetable industry. As the industry continues to grow and more extension personnel are involved in the industry, each of you could be a future nominee. So take time now to help identify those who you think are most qualified. Pass along the attached form for a grower member to use or you may wish to help them with the nomination process. Grower members were mailed this form earlier this month.

Although the deadline states “August 31”, any nominations in by Labor Day week would be considered.

Tifton Plant Disease Clinic

Jason Brock
Plant Disease Diagnostician - UGA

Multiple samples of downy mildew were submitted to the clinic and other cases were diagnosed in the
counties. Downy mildew starts out as yellow areas on the upper leaf surface and will have lesions with irregular margins. The lesions will expand and often the center will become necrotic. The best time to look for sporulation is early in the morning. The fungi can be found on the underside of a leaf; look for a “downy” growth opposite the chlorotic area on the top-side of the leaf. Using a compound microscope, you should be able to find sporangiophores and sporangia. Sporangioaphores are long, branched, and have an appearance similar to deer antlers. Sporangia are produced on the tips of the sporangiophore branches.

The following is a summary of the commercial vegetable samples diagnosed since the July newsletter.

Cabbage: Alternaria Leaf Spot (2)
Bacterial Spot

Cantaloupe: Alternaria Leaf Blight
Downy Mildew (3)
Root Knot Nematode
Physiological disorder

Collard: Rhizoctonia solani

Lima Bean: Web Blight

Pepper: Phytophthora seedling
disease
Pythium root and crown rot
Cucumber Mosaic Virus
Environmental injury
No disease

Pumpkin: Mosaic Virus

Snap Bean: Anthracnose
Pythium Root Rot
Rhizoctonia solani
Unknown

Squash: Potyvirus
Pythium Root Rot

Tomato: Bacterial Spot
Yellow Shoulder
Unknown Fruit Rot

Watermelon: Gummy Stem Blight (4)
Physiological disorder (3)