Procure Labeled on Cucurbits

David Langston
Extension Vegetable Pathologist - UGA

Procure (triflumizole) just received a new label for cucurbits. This fungicide is a good option for powdery mildew and it performs as well as Nova in squash trials. However, Procure uses the same mode of action as Nova so it should be rotated with a fungicide of another mode of action such as sulfur, Quadris, and Flint. The use rate is from 4.0 - 8.0 oz/acre with the higher rates giving the most consistent results on powdery mildew. Attached is a pdf file of the label. If it doesn't come up on your computer, contact Machelle Clements at 229-386-7495 and she will mail you a hard copy.

New Vegetable Entomologist

David Langston
Extension Vegetable Pathologist - UGA

I am pleased to announce that Dr. Alton "Stormy" Sparks will be joining the Extension Vegetable Team at the RDC in Tifton on July 1, 2002. Dr. Sparks is filling the position vacated by Dr. David Adams last year. Dr. Sparks is a Tifton native that holds an A.S. in Biology from ABAC, a B.S.A. in Entomology from UGA, and an M.S. and a Ph.D. from LSU. He has been an extension entomologist with Texas A&M since 1988 where his responsibilities covered vegetables, ornamentals and agronomic crops. We are quite fortunate to be filling this position with such an experienced entomologist.

Sandea Section 18 on Tomato

Stanley Culpepper
Extension Weed Scientist - UGA

A Section 18 request for the use of Sandea herbicide in Georgia tomato has been granted.

Sandea may be applied under plastic, POST transplant, or to row middles. Sequential applications may also be made to manage heavily infested nutsedge areas.
Sandea cont’d

Under Plastic Mulch Applications:
Apply 0.5 to 0.75 oz of Sandea per acre following final bed shaping and just prior to the installation of the plastic mulch. Tomatoes may be transplanted into this treated area 5 days after application and the installation of the plastic mulch.

Sandea applied PRE under plastic will usually suppress yellow and purple nutsedge (50 to 70% control). This application should provide excellent pigweed control.

POST Transplant Applications:
Sandea (0.5 to 0.75 oz of product per acre) herbicide may be applied to tomato transplants 14 days after transplanting. Sandea may be applied overtop or directed to tomatoes.

Directed applications may provide greater coverage of weeds.

Good to excellent control of yellow nutsedge, purple nutsedge, common cocklebur, common ragweed, and small (<2 inch) pigweed species may be observed with the POST application.

Row Middles:
1) Sandea (0.5 to 1.0 oz of product per acre) may be applied to row middles. Do not disturb treated area within 7 days of application.

Sequential Applications:
1) Sandea may be applied PRE under plastic and followed by a POST application. For these situations, use a spot treatment for the POST application. Application rate should not exceed a total of 1.0 oz of product per treated acre for both applications.

2) Sequential POST applications may also be made. For these situations, use spot treatment method treating only those areas with emerged nutsedge. Application rate should not exceed a total of 1.0 oz of product per treated acre for both applications.

THINGS TO CONSIDER:
1) A nonionic surfactant is required with POST applications.

2) Do not irrigate within 6 hours of postemergence application.
3) Do not apply under cool or stressful growing conditions.
4) Sandea will not work adequately if nutsedge or other weeds are drought stressed.
5) Do not apply to crop treated with soil applied organophosphate insecticide.
6) Do not apply a foliar organophosphate insecticide within 7 days before or 3 days after applying Sandea.
7) BE AWARE OF CARRYOVER POTENTIAL.
8) CLEAN YOUR SPRAY TANK.

This label is possible through cooperative efforts of Gowan Corporation, the Georgia Department of Agriculture, and University of Georgia Extension. Much of the data supplied to the EPA to support this label was conducted in cooperation with Georgia County Extension Agents.

SANDEA LABEL SHOULD BE ATTACHED.

Tifton Plant Disease Clinic
Jason Brock
Plant Disease Diagnostician - UGA

During July and August of 2001, foliar diseases of vegetables appeared to have been common. In the clinic we diagnosed Alternaria leaf blight (4)*, anthracnose (7), downy mildew (4), and gummy stem blight (4). However, during July and August of 2000, these diseases were not commonly seen on samples received in the clinic. If conditions are right (adequate moisture), we could see foliar diseases again this year. A field identification guide for the pathogens mentioned above can be found in the Compendium of Cucurbit Diseases and is useful for other crops as well. The diagnostic information is in Part V, pages 76-78.

Note: (number of samples diagnosed.)*

The following is a summary of the commercial vegetable samples diagnosed since the March newsletter. As in the past, May turned out to be one of our busiest month. In addition to plant diseases, we observed many samples that were the result of
environmental or physiological problems. Ozone was particularly problematic this spring.

<table>
<thead>
<tr>
<th>Crop</th>
<th>Disease or Disorder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bean</td>
<td>Pythium sp.</td>
</tr>
<tr>
<td></td>
<td>Unknown</td>
</tr>
<tr>
<td></td>
<td>Sweet Potato: Dry Rot</td>
</tr>
<tr>
<td></td>
<td>TTDTD</td>
</tr>
<tr>
<td>Cabbage</td>
<td>Cabbage Mosaic</td>
</tr>
<tr>
<td>Cantaloupe</td>
<td>Anthracnose</td>
</tr>
<tr>
<td></td>
<td>Downy Mildew</td>
</tr>
<tr>
<td></td>
<td>Gummy Stem Blight</td>
</tr>
<tr>
<td></td>
<td>Phytophthora</td>
</tr>
<tr>
<td></td>
<td>Pythium sp.</td>
</tr>
<tr>
<td></td>
<td>Root-knot nematode (2)</td>
</tr>
<tr>
<td></td>
<td>Chemical Phytophotoxicity</td>
</tr>
<tr>
<td></td>
<td>Environmental (3)</td>
</tr>
<tr>
<td></td>
<td>Sun burn</td>
</tr>
<tr>
<td></td>
<td>No Disease (2)</td>
</tr>
<tr>
<td></td>
<td>Unknown (2)</td>
</tr>
<tr>
<td>Carrot</td>
<td>Fusarium crown rot</td>
</tr>
<tr>
<td>Cucumber</td>
<td>Anthracnose</td>
</tr>
<tr>
<td></td>
<td>Disease symptoms (2)</td>
</tr>
<tr>
<td>Eggplant</td>
<td>No Disease</td>
</tr>
<tr>
<td>Pepper</td>
<td>Pythium sp (2)</td>
</tr>
<tr>
<td></td>
<td>Bacterial Leaf Spot</td>
</tr>
<tr>
<td></td>
<td>TSWV</td>
</tr>
<tr>
<td></td>
<td>Unknown (2)</td>
</tr>
<tr>
<td></td>
<td>No Disease (2)</td>
</tr>
<tr>
<td>Pea</td>
<td>Powdery Mildew</td>
</tr>
<tr>
<td></td>
<td>No disease</td>
</tr>
<tr>
<td></td>
<td>Environmental</td>
</tr>
<tr>
<td>Potato</td>
<td>Potato Virus</td>
</tr>
<tr>
<td></td>
<td>Probable scab</td>
</tr>
<tr>
<td></td>
<td>TTDTD</td>
</tr>
<tr>
<td>Snap Bean</td>
<td>Rhizoctonia solani (2)</td>
</tr>
<tr>
<td></td>
<td>Herbicide injury (3)</td>
</tr>
<tr>
<td>Squash</td>
<td>Cercospora leaf spot</td>
</tr>
<tr>
<td></td>
<td>Downy Mildew (4)</td>
</tr>
<tr>
<td></td>
<td>Phytophthora capsici</td>
</tr>
<tr>
<td></td>
<td>Potyvirus</td>
</tr>
<tr>
<td>Tomato</td>
<td>Early Blight</td>
</tr>
<tr>
<td></td>
<td>Pythium sp.</td>
</tr>
<tr>
<td></td>
<td>Rhizoctonia solani</td>
</tr>
<tr>
<td></td>
<td>Bacterial Spot (6)</td>
</tr>
<tr>
<td></td>
<td>TSWV (12)</td>
</tr>
<tr>
<td></td>
<td>No Disease</td>
</tr>
<tr>
<td></td>
<td>Chemical Phytophotoxicity</td>
</tr>
<tr>
<td></td>
<td>Environmental (4)</td>
</tr>
<tr>
<td>Turnip</td>
<td>Cabbage Mosaic</td>
</tr>
<tr>
<td>Watermelon</td>
<td>Fusarium wilt (7)</td>
</tr>
<tr>
<td></td>
<td>Gummy Stem Blight (8)</td>
</tr>
<tr>
<td></td>
<td>Pythium sp. (6)</td>
</tr>
<tr>
<td></td>
<td>Rhizoctonia solani</td>
</tr>
<tr>
<td></td>
<td>Potyvirus (3)</td>
</tr>
<tr>
<td></td>
<td>Root-knot nematode</td>
</tr>
<tr>
<td></td>
<td>Environmental (2)</td>
</tr>
<tr>
<td></td>
<td>Ozone injury (2)</td>
</tr>
<tr>
<td></td>
<td>Sun burn</td>
</tr>
<tr>
<td></td>
<td>Negative for fruit blotch (2)</td>
</tr>
<tr>
<td></td>
<td>No Disease (9)</td>
</tr>
<tr>
<td></td>
<td>Unknown (2)</td>
</tr>
<tr>
<td></td>
<td>Inadequate sample</td>
</tr>
<tr>
<td></td>
<td>Insect injury</td>
</tr>
</tbody>
</table>