Forage and Economic Considerations for Pasture-based Dairies

Dr. Curt Lacy, Extension Economist-Livestock
University of Georgia

Estimated cost of various forage systems ($/acre), Georgia 2010

- Rye
- Ryegrass
- Wheat + ryegrass
- Oat + ryegrass
- Rye + arrowleaf
- Ryegrass + arrowleaf
- Ryegrass + crimson

Forages and Hay Summary

- Slightly higher winter pasture costs.
- Larger hay stocks headed into fall.
- Expectations are for drier and warmer fall and winter.
- Should have enough hay supplies to get us through the year.
- Prices will be higher but should not get out of hand.

Something else to worry about

- Southeast Climate Consortium indicates strengthening La Nina pattern.
- Much of Southeastern US in the beginning of a drought.
- Expected to continue till at least next spring or summer.
- Major hope is active hurricane season for late season moisture for fall forages.

Economics of Pasture Supplementation
Forage and Economic Considerations for Pasture-based Dairies

Dr. Curt Lacy,
Extension Economist-Livestock
www.secattleadvisor.com

Economics of Pasture Supplementation
- Despite claims, can’t graze year-round even in the Southeastern US; 9-10 months more realistic.
- Regardless of your production system, still get paid for pounds of milk. Trick is producing lbs. at lowest cost per cwt.

Production Cost vs. Value of Production
- Economics of supplementation depends on three things:
 - Response of cows to supplementation (function of forage quality and quantity).
 - Cost of supplementation.
 - Price of milk.
- Most pasture supplementation work done for cool-season grasses.
- Very little on warm-season grasses \(\rightarrow \) perhaps one of largest research needs.

Pasture Supplementation on Winter Annuals
- Two-year trial conducted in West Tennessee.
- Dairy cows grazed on Marshall Ryegrass and Crimson Clover.
- Four levels of grain supplementation based on milk production:
 - 0
 - 1:7
 - 1:5
 - 1:3

Economic Considerations
- MVP = Marginal Value of the Product (the value of the extra production)
 - Price of the product
 - Input-Output response
- MFC = Marginal Factor Cost (the cost of the additional input)
 - Price of the input
 - Level of the input
- Keep adding the input until just before the additional cost exceed the additional value
 \[\text{MVP} = \text{MFC} \]

In other words
- Profits are maximized where MVP = MFC
- In other words keep adding the input until JUST BEFORE the additional cost exceeds the additional value.

Profit Maximizing Level
- Milk Yield = 44.98 + (1.80 \times \text{lbs of Grain}) - (0.01 \times \text{lbs of Grain}^2)
Forage and Economic Considerations for Pasture-based Dairies

Dr. Curt Lacy,
Extension Economist-Livestock
www.secaCleadvisor.com
Forage and Economic Considerations for Pasture-based Dairies

Dr. Curt Lacy,
Extension Economist-Livestock
www.seattleadvisor.com

Major Implications
- Economics of pasture supplementation depend on forage quality, quantity, input-output response, price of milk and price of the supplement.
- It appears that even at $12 milk some level of supplementation is economical.
- At lower feed costs differences in optimal amount are small ranging from 17.75 lbs. of grain to 20.50 depending on the price of milk.
- At higher feed costs the differences in optimal amounts increase with a range of 8.50 to 17.50 depending on the price of milk.

Questions?

Caveats/Key assumptions
- Your grass (quantity and quality) is similar to that in this study.
- Does this input-output relationship hold up for you?
- Assumes grain and milk prices are always KNOWN.
- Can you tune your feeding system this fine?

So what?

<table>
<thead>
<tr>
<th>Milk Price ($/CWT)</th>
<th>Corn Price ($/bushel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$12</td>
<td>$3.50 $6.15 $8.00</td>
</tr>
<tr>
<td>$16</td>
<td>$7.50 $13.50</td>
</tr>
<tr>
<td>$20</td>
<td>$16.00 $20.00</td>
</tr>
<tr>
<td>$24</td>
<td>$19.00 $19.00</td>
</tr>
<tr>
<td>$30</td>
<td>$20.50 $18.75</td>
</tr>
</tbody>
</table>

Recently purchased grazing dairy in Florida, Uruguay. Spring 2010