Surveillance for various pathogens and lead in American Black Ducks (Anas rubripes) from the northeastern and mid-Atlantic United States

Whitney Kistler Samantha, E. J. Gibbs, David E. Stallknecht, and Michael J. Yabsley
American Black Ducks

- Once the most common duck species in the eastern US and Canada
 - Population peaked in the 1950’s reached a low in the 1980’s
- Decline attributed to
 - Loss of habitat
 - Hybridization with Mallards (Anas platyrhynchos)
 - Hunting pressure (Compensatory vs. Additive mortality)
American Black Ducks

- Once the most common duck species in the eastern US and Canada
 - Population peaked in the 1950’s reached a low in the 1980’s
- Decline attributed to
 - Loss of habitat
 - Hybridization with Mallards (Anas platyrhynchos)
 - Hunting pressure (Compensatory vs. Additive mortality)
General Health of ABDU

- Very little work on pathogens in ABDU
 - 6 avian influenza virus studies
 - No studies on exposure
 - No haemosporidian studies since 1980’s
 - Little information of avian paramyxoviruses, *Pasteurella multocida*, and duck viral enteritis

- One study on lead exposure since 1991 lead shot ban
Major Pathogens of Waterfowl

- *Pasteurella multocida*
 - Several strains
 - Highly contagious
 - High mortality

- Duck Viral Enteritis
 - Duck enteritis virus
 - ABDU one of most affected species
 - Started in NE US
 - 1973 – Largest outbreak in waterfowl

Photograph (Copyright - Milton Friend)
During the 1973 outbreak of duck plague at Lake Andes National Wildlife Refuge in South Dakota, more than 40,000 mallards died.
Major Pathogens of Waterfowl

- Avian Influenza viruses and Avian Paramyxoviruses
 - Not known to have population effects
 - May have impact on individual birds
 - Both important to poultry industry
 - H5, H7, and Newcastle Disease Virus

- Avian haemosporidians parasites
 - Mortality in goslings
 - Breeding selection in passerine birds
 - New techniques (Molecular)
Objectives and Hypothesis

• Objective
Determine what pathogens are circulating and determine blood lead levels in ABDU from the eastern US

• Hypotheses
• We do not expect to detect either Pasteurella multocida or DEV
• We expect to detect both AIVs and APMVs
• We expect to detect high levels of avian haemosporidian parasites
• We expect to detect low exposure to toxic levels of lead
Methods

- Sampled 119 ducks from wintering locations in CT, ME, MD, OH, and VA and 87 ducks from breeding areas in ME.
- Collected blood and paired cloacal/oropharyngeal swabs.
- Blood samples were sent to Michigan State University for blood lead testing.
Methods

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Sample</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIVs</td>
<td>Oropharyngeal/cloacal swabs</td>
<td>Virus Isolation and RT-PCR (Matrix)</td>
</tr>
<tr>
<td></td>
<td>Serum</td>
<td>bELISA for antibody detection</td>
</tr>
<tr>
<td>APMVs</td>
<td>Oropharyngeal/cloacal swabs</td>
<td>Virus Isolation, Hemagglutination inhibition, RT-PCR (Fusion)</td>
</tr>
<tr>
<td>Haemosporidian parasites</td>
<td>Blood</td>
<td>PCR (Cyt b)</td>
</tr>
<tr>
<td>DEV</td>
<td>Oropharyngeal/cloacal swabs</td>
<td>PCR (UL6)</td>
</tr>
<tr>
<td>Pasteurella multocida</td>
<td>Blood and Oropharyngeal/cloacal swabs</td>
<td>PCR (KMT1)</td>
</tr>
</tbody>
</table>
Results

- We did not detect either *Pasteurella multocida* or DEV in any of the collected samples

- We isolated AIVs from 6/206 (3%) ducks
 - No H5

- 85/204 (42%) had antibodies to AIVs

- We isolated APMV-1 in 6/206 (3%) and APMV-4 in 1/206 (0.5%)
 - All APMV-1 were consistent with low pathogenic viruses
 - All APMVs were isolated from ME
Results: Haemosporidian Parasites

• *Haemoproteus* spp. and/or *Plasmodium* spp. were detected in 151/206 (73%)
 - Birds sampled in ME during the fall had significantly higher infection rates than those sampled in winter ($\chi^2 = 23.4$, $p<0.005$)

• *Leucocytozoon* spp. were detected in 108/206 (52%) and there was no difference in prevalence between seasons ($\chi^2 = 0.7$, $p=0.4$)

• We detected DNA from both in 87/206 (42%)
A total of 23/206 (11%) ducks had lead blood levels >200 ppb
- 15 from MD
- 2 ducks 10x toxic amount
- 5 from ME
- 2 from CT
- 1 from VA

Lead exposure did not increase risk of infection with haemosporidians
- *Haemoproteus/Plasmodium* (χ²=0.4, p>0.5)
- *Leucocytozoon* (χ²= 0.41, p>0.5)
- Dual infection (χ²= 0.41, p>0.7)
• The high number ($n=23$) of ducks with lead blood levels ≥ 200 ppb was surprising
 • Only other study had $<7\%$ (Samuel et al., 2002)
 • 15 ducks were from 1 location in MD
 • Common source?

• Historically, lead accounted for $\sim3\%$ yearly mortality in waterfowl species
 • Chronic exposure can lead to weight loss and neurologic affects
 • Could increase non-hunting mortality
 • Predation
 • One pellet can cause mortality
• Detecting >50% of ducks infected with avian haemosporidian parasites was expected
 • Traditional blood smear analysis detected >70% in some populations
 • Probably low on dual infection due to PCR assay

• Increase detection of *Haemoproteus* spp. and/or *Plasmodium* spp. in the fall probably related to increase in vectors

• Population effects of haemosporidians poorly studied in waterfowl
 • *Leucocytozoon simondi* is known to cause mortality in Canada goose goslings
 • Reported mortality in ducks
Discussion

• Our low prevalence of AIV shedding (3%), was surprising
 • 87 samples were collected in August when viral shedding peaks
 • 42% had antibodies
 • Maybe related to species composition and density

• Avian influenza viruses are not known to have adverse affects on waterfowl
 • No detection of H5 viruses important to poultry

• Detection of APMVs was similar to previous studies of waterfowl
 • All NDV isolates lentogenic
Overall, lead was the only known significant health threat found
• May play a role in population decline even after ban

Further work needs to be done on other pathogens
• AIVs have been shown to adversely affect Bewick’s Swans in Europe
• Cause hatch-year mallards to spend more time in stop-over areas
• Haemosporidian parasites cause mortality in Canada goose goslings
Future Work

- Comparison of morphology and molecular data for haemosporidians
- Subtypes for AIVs
Acknowledgements

• The authors would like to thank the Andrea Howie and Josh Parris of the Southeastern Cooperative Wildlife Disease Study

• Virginia Department of Inland Game and Fisheries

• United States Department of Agriculture
 • Randy Mickley

• Funding from the United States Fish and Wildlife Service
Questions