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In the following sections, the equation numbers without the prefix, A, correspond to those

in the main article.

Appendix 1: Approximation for PCC(o0)

To obtain an approximation for PCC(c0), fix k (= 1,...,D) and consider the (D — 1) x 1
vector Y’Lk with components Y, (k') = 22:1 bi,k,a:j, for k' # k. Then, by the assumptions, the
mean of ?Um gy = E(?z,k), isa (D —1)x 1 vector with components 1 (k') = 2221 29k,jb£,k,,
and the Covariance of Y, i, 3 = Cov(Y ), is a (D —1) x (D — 1) matrix with its (k¥’, k”)-th
element, Cov(Y,x(K'), Y (k")) = 22:1 20 ;(1 — de)bi’k,biyk,, for k& # k', k”. Our aim is to

show that, for large [
Y, ~ Nty X k), (A1)

where N denotes the (D — 1)-dimensional multivariate normal distribution. For each fixed
k=1,2,..., D, in order to prove the assertion, ?l’k ~ N(fi, X1,) for large [, we will consider
any linear combination 8 'Y, (= Z?:l#k BiY k(7)) and first show that

B 'Y — B iy

\/ 8 ,Zl,kﬁ

= N(0,1) as [ — oo. (A.2)

To this end, write

D D 1 I D

B'Yir= Z BiYix(i) = Z Zﬁi%’bﬂ,i = Z( Z Biby. ).
i=1,i%k i=1,i#k j=1 J=1 i=1,i#k
For a fixed k = 1,...,D, set Z]-‘ = (Z?:U#k Bibi’i)xj and note that |Z;| < M for some
M > 0, because |z;| < 2 and |by ;| < log(99) since 0 ; and 60;; € (0.01,0.5). Therefore,
by the assumptions in Section 2.1, {Z;} is a sequence of independent and bounded random
variables with E(Z;) = (31, ;. BilL )20k and Var(Z;) = (X2 1y, Bibl)*20k,(1 — 1),
when 7 € (.

2
For any (D—1)x 1 vector 3 # 0, assume that Z;ﬂ 2571 w2k D log(W)} — 00,
= =4 k', (L—=0kj

as [ — oo. Then, by this assumption and since 8y, ;(1 — 0 ;) > 0.01 x 0.5, we have

l ! D l D
> Var(Z;) =2 (> Bibh) 0ki(1—0iy) > (0.01)) (> Bibl,)* — oo,

j=1 i=1,i#k j=1 i=1,i#k



as | — oco. Therefore, the desired result in (A.2) follows from Example 27-4 (also see Problem
27-4) of Billingsley (1995). Hence, by the Cramér-Wold device (see Billingsley, 1995, Theorem
29.4), we have that, for large [

Yo~ N(jiy g, Sig),

This proves (A.1).

Note from equation (3) of the main article that Ky y» = — Ky and 22:8 Ky (e41) = Ks 41
forany s,t =1,...,D — 1 with s <t. Let K11 = K; fori=1,...,D — 1 and define

K
- K + K.
K, = 1A (A.3)
Ki+ Ko+ ..+ Kp_ (D—1)x1
Then, for £k = 2, ..., D, it can be shown that
Ki = K-y — Koo T — Ko@) (A4)

where 1 = (1,1,....,1) and €,_; = (0,...,0,1,0,...,0) with 1 in the (k — 1)-th position and 0

elsewhere. Now, for any (D — 1) x 1 vector K, define
SR D)= [ 9l i, DK (A5)
K

where ¢ is the (D — 1)-dimensional multivariate normal density and fg) is a multiple integral.

Then, we can conclude from (A.1) that for large [

mP(Y, > Ki| X € )

NE

PCC(c0) =

e
Il
—_

Wk(i)<ﬁk;ﬁl,ka Yk

Q
NE

k=1
D 00

= Zﬂk[ (X iy g, By 1) dX (A.6)
k=1 K

which establishes equation (4) of the main article.



Appendix 2: Wald test and its power function

Here, we derive a Wald test for testing ng' : O ; = Ok j versus Hf’f/ : O # O for each
j. For notational convenience, we let £k = 1 and ¥’ = 2, and 6,; = 6, and 6,; = 6, for
the derivations below. For each X satisfying Assumption 2 stated in the Methods section
of the main article, let ny; = Z;Lil Iia =0y, Mok = 2?21 I{p,—1y and ngj, = 2?21 I{y,—2y with
Zle nix = nyg for k = 1,2. Then, by Assumption 2 and the independence of the two classes,

the likelihood function for a sample of size n; from each class is:

L(61,05) = [ (1 — 6)°]* 204 (1 — 6,)]"2+ [67]">".

k=1

Maximizing the log-likelihood, logL(61, 65), with respect to (61, 60s), it can be shown that the

maximum likelihood estimator (MLE) of 8; and 6, are, respectively:

N Not1 + 2n A Nog + 2n
O, = 2L 2580 and fy = 2 T2
2711

(A7)

2”2

L )
2n = ny +no. Then, by the asymptotic normality of the MLE, it follows that \/ﬁ(él — 04, 0 —
) Y No(0,171(60y,65)). Now, since g(y,6:) = 0y — 0, is differentiable at (61, 60,), it follows
from the delta method that v/n[g(01, 65) — g (01, 05)] A N(0, 91(1791);92(1702)). Therefore, under

Hy : 0, = 05, the Wald test statistic

2
Also, the Fisher information matrix at (0, 6,) for ny = 11is I(04,603) = ( mi-m ) Let

2y — 6)2
Q= 0l

~ ~ __ 4 X7 as n — 0o, (A.8)
61(1 —61) + 62(1 — 65)

where x? has chi-square distribution with 1 degree of freedom. However, under H, : 0 # 0y,
say 0; — 0y = h, it follows from the above arguments that Qy - x3(A\?), where x?(\?) has
non-central chi-square distribution with the non-centrality parameter, A\* = 2nh? /[0, (1 —6,) +
(01 — h)(1 — 01 + h)]. Therefore, the power of the Wald test (when 6, — 0, = h # 0) is:

1- 5(”1777’27 h) ~ P(X%(A2) > Xi(l—a))a

where x3 ( is the (1 — a) percentile of x3. For ease of presentation, we had suppressed the

1-a)
subscript j. For each j = 1,...,m, the power of the Wald test for Hy : 0 ; = 0 ; versus

Hy :0p; # O at O, = O j + h; is denoted by 1 — ﬂf’k/(nk,nk/, h;). Note that the power,



1— Bf’kl (ng, ngr, hy), of the test is determined using a non-central Chi-square distribution with

a non-centrality parameter, which depends on n; + ny and h;.

Appendix 3: Approximation for PCC(7)

To obtain an approximation for PCC(7i), we adopt the same approach as in Appendix 1. For
the linear classifier given in (5) of the main article, consider the (D — 1) x 1 vector ?nmk
with components Y, x(k) = > l;i’k,wj,n(k’, K')x;, for k' # k. Then, using the assump-
tions made in the Methods section of the main article and that (ZA)ik/ — b)) = O(n~2), it

is shown below that the mean, E(Y, k) = ﬁmvk, is a (D — 1) x 1 vector with components

ﬁm,k(k' ) & Z;n:l 29k7jb{; k,ﬁf’k/. In addition, we also compute below an approximate expression

for the (D — 1) x (D — 1) Covariance matrix of ?mmk, denoted by f]mk

First, note from the calculations carried out in Appendix 2 that

P(Reject Hy') = P(Reject Hy¥ |Hyt ) P(HyT)
+P(Reject Hyl |HEF Y P(HEY)
= [p{1 = 57" (e, o W)} + (1 = p)a] = 7™, (A.9)

where p is from Assumption 3 of the main article and ﬁf’k/ depends on (ny,ny ). Therefore,

from the definition of w;,(k, k") in the linear classifier,

E(wj(k, k) = BE(wjn(k, k'))?) = P(Reject Hy') = ™.

J

From these, it can be shown that

B0} jwin (kK )aj) = E{B(b] yw;(k, K)w;) w; (k, &)}
~ E(20k7jl;i’k,wj,n(k:, )

~ .7 ~k7k,



and

Cov(w; . (k, k:')l;i’k,xj, wjn(k, k:")lA)j T5)

= E(@3wjn (b, K Ywjon (b, Kb, b, ) — E(wjon (b, KO ;) B (wjn (e, KO, )

= E{E[30], b, gortws.n (s K Y (ks K w50 (e, K Yy (b, K]} = E(wyn (ks KB o) B (wj (K, KB, o)

= E{wjn(F, kl)%,k/%,k’w]‘ n(k?, K" [205(1 = Ok ) + 467 1} — E(w; (b, k)b os) B (wson (Kb, )

(bi,k/)2[2‘9kd( — 0y, ]) + 49k ]77] (1 - ﬁfk/)]: if K =k

(261 (1 = Ox ) + 463 1% bl o B (w5 (e, K Y (B, K)) = (205 360 001 ) (208 56 gy ), 3 K £ K
(A.10)

Now, we give an approximation for E(w;,(k, k")w;,(k, k")) in (A.10). First, note using the
results in Appendix 2 that v/2n(6;; — 6;;) = N(0,0;,;(1 — 6,;)) where i = k k¥, k" and
V21 (0 — Osj — O + 0s;) = N(0,6,;(1 — i) + 05;(1 — 6,)), where s = K k”. Now

A V2n (0, j—0, A Von(0y =0, .
define 77 = Org i) and Tp, = Ori ;) . Then from (A.8), we
Ok, (1=05.,5)+05 ;(1=637 ;) VO3 (1=0k 1)+ 0y ;(1=0prr ;)

have Q2(0yj,0k ;) = T% and Q2(0k;, 0k ;) = T3 and recall that Héﬁ’f, : Op; = O, and
Hg,’fﬁ : Ok,; = Opr ;. From these, we have

E(wjn(k, K)w;jn(k, k)
= P(reject H(];””f/ N reject H(’i’fﬁ)
= P({Qa(0, 0 ) > X7 (1)} N {Q2(0k;, 00 5) > Xi-o(1)})

= P(ITh] > \/x3_o(1) 0 |To| > (/X3 _.(1)).

For k, k', k", we can mimic the arguments leading to (A.7) and (A.8), and show that (7%, Ts)
is asymptotically multivariate normal. Note that the means, variances, and covariances of T}
and T, are given by:

V2n(0r; — O ;)

E(T) =
1 VOki(L =01 5) + O (1 — Ops ;)
B(Ty) = V2O — Orr)

V Ok (1= 0 5) + Opr (1 — Oy )

Var(Ty) =Var(Ty) =1



O, (1 — O ;)
V1O (1 = 0kj) + O 5(1 — Op j)][0k (1 — Ok j) + Opr j(1 — Oper )]

CO’U(Tl, TQ) =

Returning to the approximation of PC'C(7), assume for simplicity that K s in (5) of the main
article also satisfies the same properties as Ky in (A.3) and (A.4); that is, K Kok = — K K k!
and ZZ:S [~(k7(k+1) = ~s*t+1~ for any s,t =1,...,D —1 with s < t. Let f(mﬂ = K, for
i=1,..,D—1, and define K; and K; as in (A.3) and (A.4), respectively. Then, once again,
as in (A.1), for large m we can show that Y, ; ~ N(ﬁmk, Xok)-

Then, as in (A.5) and (A.6), the PCC of the linear classifier is:

PCC(it) =Y mP(Ypmi > Ki|X € Cp)
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(A.11)
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Note that PCC(i#i) depends on @ = (ny,...,np)" through (ﬁmk,f}m,k), which depend on
(" kK =1,...,D}.
Appendix 4: PCC and VUS expressions for three classes

Here, we assume that D = 3 and obtain an expression for PCC/(o0), PCC(i7) and VUS(c0).
Calculation of PCC/(o00):

l l l l
PCC(OO) = WIP(Z [Ejbjl’z > KLQ, ZIL‘jb{:’ > K173> + WQP(Z IL‘jb;J > KQJ, ijb%73 > Kgﬁg)

jfl j*l 7j=1 j=1

+ w3 P ZI'J31>K31, Zl’] >K32



Let

Ky 2 Kip=—Ky,
Ky £ Koz = —Ksp
Ki3=Ki + K,

K, = —(Ki + Kj).

Then, rewrite PCC/(00) as

PCC(c0) = m P Zx] 1, > K, ij 15> (Ki+ Ky)) + mP ij
J=1
+7T3P Zl’] K1+K2 ijbé2 > KQ)
7=1
~ Wl(I)((Kla K1+ Ko g, Sg) + m@((— Ky, Ko)'s iy, 22)
+ 7T3(i)((_(K1 + K2)7 _K2),; ﬁl,S? 2573),
where

l_i . 22‘:1 2elﬁjbjll,z
1,1 — l ]
Zj:l 261,jb3173
12 — l i
Zj:l 292,]’%,3
i > 293,]-1731)
1,3 — l i
Zj:l 293ﬁjb?3,2

20 5)2015(1— 015) >,
—015) Y

. S
Y. iy 25:1 71,2/ 2b{,25{,391,j(1
’ Zj:l 2b]1,3b{,261,j(1

a (Z;:l 205 b 40251
it

2(1?571)292,3'(1 —0y) Y
2b§,3b%,192,j(1 - 92,3’) Zé’:l

\
)
[|>

—01;)
2(b] 3)%01,5(1 — 6015)

— 0a5)
2(y,3)%02,5(1 — 62)

)
)

7j=1

(A.12)



5,8 lejzl 2(@%,1?2934(1 —035) 2%21 25%,&%,2934(1 —035) |
’ D1 205103003 (1 —035) 325 2(b35)%03,5(1 — 03;)

Calculation of PCC(7):

Note from (5) of the main article that

)? € Cl ’Lf {Z 5{72wj7n(1, 2>.Z'j > Kl} & {26{7311]]"”(1,3)1’]‘ > [%1 -+ ]’?2},

J=1 Jj=1

X € 02 Zf {Z Bg}lem(Q, 1)5(,’] > —Kl} & {Zéé’3Wj7n(2,3)$j > XQ},

j=1 j=1

)? € 03 Zf {Z 6%7111}]"”(3, 1)1'] > —(Kl + KQ)} & {Z B%;’ij'm(g,Q)xj > —KQ}

j=1 j=1

Therefore,

PCC(i) = mP Zl;{ Jwin(1,2)z; > K, Zb 3Wjn(1,3)z; > K| + K>)

7j=1
+ WQP(Z Bawin(2, D)ay > =Ky, Y B gw;a(2,3)a; > Ky)

j=1 j=1

—i—mP(Z IA)gle,n(?), Da; > —(K, + Ky), Z 42w]n 3,2)z; > —K>)
i=1 j=1

~mP (K1, K1+ Ky)'s l:iz,p 5)171) + m®((— Ky, Ky ;Mz,2> 21,2)
+ 3P ((— (K + Ka), —K»)'; ﬁl,i’)a i3),

where



li, Z 92]~21
l’2 22] 192]~23

ﬁ — 22] 163J~31
1,3 Z 03]~32 9

and the 2 x 2 variance-covariance matrices (written in a vector form due to the length of each
expression) are given by:

ST (B )* 2015 (1 = 0150 + 46800 (1 — %))
1[201;(1 = 615) + 49%,;’]531 ob 3E(wjn(1,2)w;n(1,3)) — Zm 40%]17{ N 377]1 2771. 3]
~1,2 ~ 13
]

>
Y= S

20ima[201(1 = 015) + 467 161 261 5 B (w1, 2)wgn(1 3)) — 2071 467 ;b4 504 50y
Sy (075)°1201,5(1 — 01,7 + 463 5777 (1—?7,13)]

Z?:l(bg,1>2[202,](1 - 02 ])nj + 402 177] (1 - /’7,32 1)] '
[20,;(1 — 0q5) + 4€§’j]b§’1b§’3E(w%n(2, Dw;jn(2,3)) — Z 49%;% 15% 377]2 177]2 3]

91 2 3
4‘95317%152 3171 ]

m
j=1

1o1[202,5(1 — 0a5) + 49%,j]b%,2bj s E(wj (2, Dwjn(2,3)) = 2770
Dot (bh3)%[202,(1 — 6, a)~23 + 463 3ﬁj23( - 77]2-3)]

SO (6.1)21205,5(1 — 05,7 + 463,732 (1 — 707)]
~3,1 ~ 32]

T (2055 (1 = Os5) + 403 ;103 1 by B (w; (3, 1)wsin(3,2)) — 371 408 565103 57777
~3,1-3,2
]

S
Y3 = o o

Zj:1[203,j(1 —035) + 4Q§,j]b§,1b§,2E(w$n(3 1)w] n(3,2)) — Z 49?2,]19% 1b3 215 1y
ST (B5)%[205,5(1 — 037" + 463 577, ° (1 — ﬁf *)]

Calculation of VUS(c0) and VUS(7):

If we denote Ny(x1,xo; [, %) as the two-dimensional normal density function with mean g

and variance-covariance matrix 3, then from (A.12) and (7) of the main article, the right side

of PCC(c0) involves



o0 oo
§11 = / / Na (w1, @23 by, 1) dzrday
K1 JK1+K>3

S22 = / Na (21, To; Ij’l,Qv 3 2)dzidry

K1 J Ko
D D
§33 =/ No(z1, 22; Hy 3, X1,3)dr1dTs.
—K1—Ks J—-K>

Then, from (9) of the main article we have

1 1
VUS(00) = /O /O (K, K)o (K, ) dEs s (K, ).

Similarly, we can derive expressions for VUS(7).

Appendix 5: Monte Carlo Simulations using AUC

To compare the performance of our linear classifier with another classifier in the literature,
such as the SVM, we also computed the AUC(n) values corresponding to the SVM for the
same simulation setup as the one described in Table 1 of Liu et al. (2012). For ROC and
AUC calculations, we consider the special case, §; = (01,...,60,) and 0y = (0s,. .. ,0) with
01 > 0. These are given in Figure 1 below. Note that, unlike our linear classifier, there is
no approximate formula available to calculate the AUC(n) for SVM. Therefore, we cannot
compare AUC(n) values for our linear classifier (or the AUC(o0) values) with AUC(n) values
for SVM. Figure 1 shows that the ROC _MC values are essentially same as those for the ROC'
for the SVM _MC. This says that our linear classifier is as good as or slightly better than the
SVM. Table 1 compares the approximate values of AUC(n), denoted by AU C (n), with the
Monte Carlo based estimates, AUC (n)MC, for various specifications. To obtain AU C(n)MC
values, for each specification in Table 1, we simulated a training data and a testing data of
SNPs, each having the same sample sizes. The training data was used to build the linear
classifier, while the testing data was used to determine the frequency of correct classification
of the linear classifier. This process was repeated 200 times in order to compute the average
correct classification frequency, AU C (n)MC, given in Table 1. It is evident from Table 1 that
the Bias = AU@(n)MC — AU@(n) is negligible in most cases, thereby validating the use of
our approximation for AUC(n). Also note that both AU@(n)MC and AU@(n) are close to
AUC (0), approximate values of AUC(c0).

10
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Figure 1: ROC curve for optimal classification, linear classification, Monte Carlo simulation
and SVM, the shade is the ROC curve for each simulation. « = 0.1, p =1
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Table 1: Performance of Optimal and Linear classifiers: The values of AUC (n) and
AUC (n)MC are close to each other for various model specifications. Here, 6; = 0.3, h = 0, —0,,
Size = 2n (n for Cy, n for Cy), m is the number of independent SNPs, ov = 0.01 is the signif-
icant level for Wald tests in Section 2.3, and p = 1 is the percentage of the significant SNPs.

h  m Size AUC(c0) AUC(n) AUC(R)MC  Bias

0.01 10 60 0.5276 0.5021 0.5032 0.0011
0.01 10 200  0.5276 0.5022 0.5022 0

0.01 10 400  0.5276 0.5024 0.5016 -0.0008
0.01 50 60 0.5616 0.5047 0.5183 0.0136
0.01 50 200  0.5616 0.505 0.5111 0.0061
0.01 50 400  0.5616 0.5054 0.5079 0.0025
0.01 200 60 0.6218 0.5094 0.5373 0.0279

0.01 200 200  0.6218 0.5099 0.5217 0.0118
0.01 200 400  0.6218 0.5107 0.5169 0.0062

0.0 10 60 0.6386 0.5171 0.5122 -0.0049
0.05 10 200  0.6386 0.5292 0.5288 -0.0004
0.05 10 400  0.6386 0.5442 0.5439 -0.0003
0.05 50 60 0.7861 0.5382 0.5426 0.0044
0.05 50 200  0.7861 0.565 0.5752 0.0102
0.05 50 400  0.7861 0.5979 0.6197 0.0218
0.05 200 60 0.9436 0.5761 0.5864 0.0103
0.05 200 200  0.9436 0.6283 0.6585 0.0302
0.05 200 400  0.9436 0.6901 0.7367 0.0466
0.2 10 60 0.9488 0.8594 0.8746 0.0152
0.2 10 200  0.9488 0.9471 0.9452 -0.0019
0.2 10 400  0.9488 0.9488 0.9464 -0.0024
0.2 50 60 0.9999 0.992 0.9944 0.0024
0.2 50 200  0.9999 0.9999 0.9999 0

0.2 50 400  0.9999 0.9999 0.9999 0

0.2 200 60 1 1 1 0

0.2 200 200 1 1 1 0

0.2 200 400 1 1 1 0
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