THIRD ANNUAL REPORT

1922

S. H. STARR, Director.
COASTAL PLAIN AREA OF GEORGIA
BOARD OF TRUSTEES

Ex-Officio:

Thomas W. Hardwick, Governor of Georgia. Atlanta
J. J. Brown, Commissioner of Agriculture. Atlanta

Appointed by the Governor:

*R. W. Goodman, Chairman .. Tifton
A. J. Bird, Secretary and Treasurer Metter
H. W. Hopkins ... Thomasville
Newton Watkins ... Fitzgerald
D. M. Parker .. Waycross
J. W. Slade ... Sandersville
H. H. Elders ... Reidsville

Station Staff:

S. H. Starr, Director.
W. J. Davis, Agronomist.
Otis Woodard, Horticulturist.
†J. C. Hart, Tobacco Specialist.
Fred Bell, Farm Superintendent.

*Appointed Feb. 20th, 1922, to succeed the late Hon. H. H. Tift.
†Assistant Agronomist, U. S. D. A.
Tifton, Ga., June 1, 1923.

To His Excellency, Thomas W. Hardwick,
Governor of Georgia.

In accordance with the regulations of the Board of Trustees, I have the honor to transmit to you herewith the Third Annual Report of the Georgia Coastal Plain Experiment Station, as submitted to the Board, April 29th, 1923.

Very respectfully,

R. W. GOODMAN, Chairman.
REPORT OF THE DIRECTOR FOR 1922.

April 29, 1923.

To the Honorable Board of Trustees of the
Georgia Coastal Plain Experiment Station.

Gentlemen:

The third year’s work of the Georgia Coastal Plain Experiment Station has been one of progress in developing the experiments under way and undertaking new lines of research. When the station was established experiments were begun in a limited way, but the major portion of the work of the first two years consisted largely of stumping, ditching, fencing and such development work as was necessary to convert the station tract of cut-over land into an experiment farm. As more land was cleared, the experimental work was enlarged accordingly until at present there are being grown for experimental purposes the principal field, orchard, garden and pasture crops of the coastal plain region. Various lines of research are now in progress on problems confronting the farmers of this large region, comprising approximately three-fifths of the State, where the soil and climate favor a wide diversity of crops.

Although much of the experimental work has been in progress only a short time it is attracting the attention of a large number of farmers. The County Agents of South Georgia visited the station in the spring and many returned later with automobile parties of farmers to study at first hand the tests of pasture and forage crops, or the particular projects in which they were interested. The visits of farmers singly, in small parties or in larger groups from counties of various sections of south Georgia have been welcomed. This contact has proven advantageous not only as a very effective method of presenting the results of the experiments to those directly interested, but the comments of the farmers have been helpful in planning the investigations
along practical lines. The numerous inquiries handled through correspondence indicate that the farmers are relying more on the facts developed through experiments and that there is an increasing demand for the services offered by the experiment station.

That work should be begun on problems affecting live-stock production was recognized at the beginning. The mild climate, the long growing seasons and the sandy loam soils which permit the grazing of field crops favor live stock production as a prominent part of the farm program. Lack of good permanent pastures, however, has limited production. Work on this phase of the subject, therefore, was begun the first year of operation.

Tests are in progress to determine the grasses best adapted and those showing promise of value are further tried out under pasture conditions. Carpet grass, Dallis grass and lespedeza do well on moist land and effort is being made to find better grasses for the drier soils. The work on pasture and feed crops includes adaptation tests of clovers, vetches, field peas and various legumes. In this way a new bur clover (Medicago rigidula), far superior to the kind ordinarily grown, has been introduced into Georgia. One of the vetches (Vicia monanthos) is not only making a good growth, but has the habit of seeding freely, a characteristic usually lacking in the other vetches grown here under test. One of the Canada field peas, Grey Winter, has proven winter hardy so far and has produced good results when sown with oats in November and cut for hay early the following spring. This work on pastures and the growth of feed crops, including hog grazing experiments, will be continued as it is considered necessary to develop good permanent pastures and provide cheap feed if the production of live stock in the coastal plain region is to be profitably increased.

In the process of development of the station, tests were started on varieties, effects of fertilizers and studies begun on other factors influencing the production of field crops. Orchards were established and truck crops planted in order to work on the problems connected with this growing and important branch of
farming in south Georgia. At the first of the year the tobacco department was established. The lines of investigation being conducted with the tobacco crops are attracting the attention of growers in the tobacco centers of the State and the very complete set of experiments should develop facts that will go a long way toward increasing the profits from this new and important cash crop.

An administration building was erected during the year to furnish office and laboratory accommodations, as well as to store machinery and serve for general farm and experimental purposes. Laboratory equipment and housing quarters for laborers should be provided as early as possible.

At this time the experiment station is in the position of getting well started to work on the problems of the coastal plain farmer. It is obvious that with the amount of research work in progress and the increasing demands of farmers for more information concerning problems affecting the growth of crops and livestock, as well as insect and disease control, more funds should be provided to properly carry forward the work.

The following report of the work in progress prepared by members of the staff indicates in a general way the lines of investigations under way. Sufficient time has not yet elapsed to justify conclusions, but already interesting results of value are being obtained. These results apply to a region where little research work has previously been done and it is expected that the station will grow in usefulness as its work is developed.
AGRONOMY

The work of the Agronomy Department has been developed to the point where investigations are now being made to determine the comparative values of the principal varieties of farm crops, their fertilizer requirements and other factors which influence their economic production.

SMALL GRAINS: Variety tests and dates of seeding and fertilizer tests are being conducted with small grains. Georgia Red wheat led in yield. Fulghum oats was highest in yield as compared with ten other varieties but this was doubtless due to unusual seasonal conditions as the data collected to date show the average yield to be better from the Hundred Bushel variety. November 1st seedings have resulted in greater yields than from seedings made later, and top dressings of nitrate of soda or sulphate of ammonia have proven most beneficial applied February 1st.

TABLE I—INFLUENCE OF DATES OF SEEDING ON YIELD OF OATS.

<table>
<thead>
<tr>
<th>VARIETY</th>
<th>Date Seeded</th>
<th>Yield in Bushels per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1920</td>
</tr>
<tr>
<td>Fulghum</td>
<td>Nov. 1st</td>
<td>25.0</td>
</tr>
<tr>
<td>Fulghum</td>
<td>Dec. 1st</td>
<td>11.3</td>
</tr>
<tr>
<td>Appler</td>
<td>Nov. 1st</td>
<td>38.4</td>
</tr>
<tr>
<td>Appler</td>
<td>Dec. 1st</td>
<td>11.5</td>
</tr>
</tbody>
</table>

COTTON: The following constitute the principal lines of experiments with cotton:

1. Variety tests.
2. Nitrogen tests.
3. General fertilizer tests.
4. Spacing tests.
5. Boll Weevil control tests.
CORN: The variety tests, fertilizer tests and inter-planting corn with velvet beans are being continued.

PEANUTS: The peanut variety tests consist of seven varieties. A fertilizer test is also being conducted with this crop.

SORGHUM SILAGE TESTS: Ten varieties of sorghum were grown on very light, freshly cleared Norfolk soil and weights were taken to make comparison as to their values.

SUMMER HAY TESTS: Comparative tests of combinations of Sudan grass, Red Top Sorghum, Brabham cowpeas, Laredo soy beans and Florida Beggarweed were seeded for hay in three-foot rows after oats and compared with similar areas broadcasted.

TABLE II—SUMMER HAY TESTS, 1922.

Seeded May 10th.—No Fertilizer.

<table>
<thead>
<tr>
<th>CROP</th>
<th>Field Cured Hay in Lbs. per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Broadcasted</td>
</tr>
<tr>
<td>1. Red Top Sorghum and Laredo Soy Beans.....</td>
<td>4280</td>
</tr>
<tr>
<td>2. Red Top Sorghum and Florida Beggarweed...</td>
<td>3960</td>
</tr>
<tr>
<td>3. Red Top Sorghum and Brabham Cowpeas.....</td>
<td>3840</td>
</tr>
<tr>
<td>4. Laredo Soy Beans</td>
<td>2400</td>
</tr>
<tr>
<td>5. Sudan Grass and Brabham Cowpeas...........</td>
<td>2200</td>
</tr>
<tr>
<td>6. Sudan Grass and Red Top Sorghum............</td>
<td>2040</td>
</tr>
<tr>
<td>8. Brabham Cowpeas and Laredo Soy Beans.....</td>
<td>1920</td>
</tr>
<tr>
<td>10. Sudan Grass and Laredo Soy Beans.........</td>
<td>1840</td>
</tr>
<tr>
<td>11. Red Top Sorghum................................</td>
<td>1840</td>
</tr>
<tr>
<td>12. Brabham Cowpeas................................</td>
<td>1760</td>
</tr>
<tr>
<td>13. Sudan Grass and Florida Beggarweed......</td>
<td>1680</td>
</tr>
<tr>
<td>14. Sudan Grass..................................</td>
<td>1000</td>
</tr>
</tbody>
</table>

COWPEAS: Work with this crop consists of tests with varieties, fertilizers, influence of spacing and dates of seeding with especial reference to the effect these factors may have on the fruiting of this crop.

SOY BEANS: A large number of the leading varieties of soy beans are included in the hay and grain tests. The value of
the soy bean as a hay and grazing crop in this section is no longer speculative. It produces an excellent quality of hay and the best varieties have been producing more tonnage per acre than cowpeas. The soy bean has the characteristic of maturing seed whereas cowpeas over a greater portion of south Georgia usually produce but very few seed. The cowpea pod weevil usually destroys the cowpea grain crop but has not attacked the soy bean. The Laredo and O-Too-Tan varieties of soy beans have been producing good yields of hay of good quality.

MILLETS: Fair yields of grain have been secured from Japanese and Golden Millet.

CANADA FIELD PEA: The field pea offers possibilities as a hay crop, as a winter cover and green manure crop or as a source of early grazing in the spring. Eight varieties were grown this season. Some of them made excellent growth. The Grey Winter variety seems best adapted and has proven winter hardy when planted with oats in November.

VETCH VARIETY TESTS: Several varieties of vetches are being grown in a series of variety and adaptation tests. The Oregon or Common vetch continues good; producing a strong vigorous growth, but very few seed.

Hairy Vetch ordinarily produces good growth but did not do so well this season. The extreme drought in early spring prevented its developing during the period when most growth may be expected from it.

Monanthos Vetch, an early maturing and fine stemmed variety, produced an abundance of growth and a good seed yield. The free seeding habit of this vetch gives the Monanthos variety a decided advantage over the other vetches in the tests.

Wooly podded, Purple, Hungarian, Bitter and Narrow Leaf are the other vetches included in the tests.

BUR CLOVERS: A large number of bur clovers are being tested to determine the kinds which may be expected to give the greatest returns for early spring pasturage.
Of the large number of varieties of bur clover under test, Medicago rigidula, a new variety, is best adapted to soil and climatic conditions in the coastal plain area. This species makes a more vigorous growth, is more resistant to drought, heat and disease and produces seed in greater abundance than any of the others under trial. The manner of growth of this bur clover, and the amount of growth it will produce with proper inoculation and fertilization should make it one of the best fall sown leguminous grazing plants of this area.

Seed were secured of this promising variety from the Office of Forage-Crop Investigations for the fall seedings in 1920. Since that time every effort has been made to increase the seed supply at the greatest possible rate. At present an increase plat of one acre is being grown at the station.

PASTURE GRASSES: Increasing demands for better permanent pastures have come with the growth of dairying in south Georgia. Farmers selling sour cream or other dairy products are recognizing the necessity of developing better permanent pastures. This has resulted in an increased interest in grasses and pasture plants adapted to the sandy soils of the coastal plain.

To meet this demand for better pastures, a large number of grasses are being tested to determine their adaptability and grazing value and efforts are being made to find plants adapted to the higher or drier soils of this section.

A number of promising grasses now included in the tests are Bahia Grass, Centipede Grass, Napier Grass, Vasey Grass, Digitaria iburu, Molasses Grass, Jaragua Grass, Rhodes Grass, Sudan Grass, Para Grass, Carib Grass and others.

A large number of newly introduced varieties are also being grown in small areas to determine their adaptability to soil and climatic conditions.
PASTURE EXPERIMENTS.

Carpet grass, Dallis grass and lespedeza have proven a very satisfactory mixture for lowland pastures. The damp lowland soils are the best soils for pasturage in South Georgia. The poorer uplands or sandy hillsides are not so well suited for the above mixtures.

METHOD OF PREPARATION OF LOWLANDS FOR PASTURES: Several methods of preparing the lowlands for pastures have been tested. The most satisfactory method yet devised consists in first cutting out all the native undergrowth, then disking thoroughly with a disc harrow to destroy the native grasses and weeds, and permitting the soil to become well firmed before the seeding is made. In order that the soil may be in the proper condition to receive the spring seedings these clearing and disking operations should be done in early fall.

SEEDING THE LOWLAND PASTURES: Very satisfactory results have been obtained from seedings at the rates of 10 to 12 pounds of lespedeza, 5 pounds of carpet grass, and 5 pounds of Dallis grass per acre. Two to three pounds each of carpet grass and Dallis grass may be used when seed of these grasses are expensive, but this will necessitate waiting longer for a good sod to develop.

Seedings should be made on the upland pastures as early as February 15th, if seasonal conditions will permit. On the lowlands March 15th to April 1st seedings have given best results. Seedings made in February on the lowlands resulted in very poor stands, due to an excess of standing water which caused the seed to rot.

GRAZING TESTS: A series of tests are being conducted to determine the amount of grazing which may be expected from carpet grass, Dallis grass and lespedeza on lowland pastures.

The area devoted to these tests consists of approximately eight acres of lowland which is fairly well drained. This area is
divided into four equal parts. One area received a carpet grass seeding, the second a lespedeza seeding, the third a Dallis grass seeding and the fourth a combination of carpet grass, Dallis grass and lespedeza.

No records for the individual areas were kept this season for the reason that the first season’s pasturage, due to the lateness of the seeding, was not representative of what might be expected from the two grasses and the lespedeza on good lowlands. It has been highly advantageous to graze closely in order to trample down the native vegetation, firm the soil and get the carpet grass and Dallis grass established.

CRIMSON CLOVER: This crop offers possibilities for green-manure, an early spring grazing crop and on the best soils of the area as a hay crop.

A series of tests are being conducted with crimson clover to determine the best date of seeding. The earlier seedings made on October 15th and well inoculated produced good yields of hay.

Inoculation is a very important factor influencing the results with crimson clover. Very poor results were secured on uninoculated areas. Splendid inoculation resulted from inoculated soil broadcasted and harrowed into the soil or drilled into furrows one foot apart.

ALFALFA: Kansas and Peruvian varieties were grown in a limited way to determine their degree of adaptability and hay yields. The results secured thus far indicate that the Kansas variety will produce a greater yield of hay than the Peruvian, although neither variety shows much promise for South Georgia.

KUDZU: Plantings of Kudzu made February 3rd, 1920, have continued to make fair growth on soil heavily sodded with Bermuda grass.
HORTICULTURE.

When operations at the station were begun in 1920 all of the area now devoted to horticulture was uncleared or cut-over land. The land was stumped and brought under cultivation the first year and the horticultural work was begun in June of the second year. In the present year, 1922, the department was enlarged and experimental work undertaken with the principal orchard and truck crops. Due to the short time the work has been in progress and the necessity of bringing the land to a state of uniformity by cultivation it is too early yet to draw conclusions. However, the principal lines of investigation are listed below and the results will be published in bulletins and reports of progress.

SWEET POTATOES: The work with sweet potatoes embraces experiments designed to throw light on their economic production. The principal lines of work with this crop are tests with varieties, planting and harvesting dates, spacing tests, hill selections, a fertilizer test to determine the proper combination of phosphorus, ammonia and potash, and rates of applying fertilizer.

York Yam has led in yield during the past season and the commercial varieties have been rather low in comparison. Early plantings have shown a decided increase over the late plantings and during the present year the highest yields were obtained from the late harvesting dates. One year's results indicates the advisability of close spacing. This, however, will no doubt be largely influenced by seasonal conditions.

TOMATOES: The principal lines of work with tomatoes are variety tests, dates of planting, and fertilizer tests.

A wilt resistant strain of tomato, Selection No. 5, led in yield and New Stone came second. Although the wilt resistant strains of tomatoes ran comparatively high in yield, there is some evidence that the quality is not as good as the commercial strains.
The highest yields of tomatoes were obtained from the early plantings.

IRISH POTATOES: A study is being made of varieties, dates of planting and the fertilizer requirements of Irish potatoes.

WATERMELONS: The work with watermelons consists of a variety test, dates of planting tests, fertilizer tests, pruning tests and disease control.

TRUCK AND VEGETABLE CROPS: Study is being made of varietal adaptation of a large number of truck and vegetable crops including both fall and spring plantings. These tests also include the time required to mature fruit and the period of productiveness when this factor is considered of value.

IRRIGATION TESTS: Due to the increased interest in irrigation in growing truck and vegetable crops, over-head and sub-irrigation systems have been installed with a view to determining the system best adapted and that can be most economically used in this section; water requirements and yields obtained being the factors to which most attention is being given.

ORCHARD WORK: A large number of varieties of fruits have been planted and already there are indications that certain varieties possess special adaptability to South Georgia.

The work with fruits is in its second year. The principal lines of investigation are varietal adaptation, fertilizer requirements, methods of pruning and orchard management.
TOBACCO.

The tobacco and plant nutrition experiments conducted in co-operation with the U. S. Department of Agriculture and the Georgia State College of Agriculture were begun in full during the year 1922.

The work consists of eighty fortyeighth-acre plots devoted to fertilizer experiments with tobacco and three hundred and ninety-two plots of one-fiftieth acre each on which different cropping systems with varied fertilizer treatments are used.

FERTILIZER EXPERIMENTS WITH TOBACCO: Aside from the proper selection of the soil, there is probably no other controlled factor that plays such a vital part in the successful production of tobacco as the fertilization (assuming, of course, that good care and attention be given the crop).

The proper fertilization for tobacco is one that will give a maximum yield of the best quality. Since color, texture, size of the leaf and fibers all play their part in determining quality and as all of these are influenced by the fertilizers used, the fertilization becomes at once an important factor in the production of bright tobacco. Improper fertilization may not only result in a loss of the fertilizer unwisely used but may so affect the quality as to cause a very great loss in the price received per acre.

As tobacco is a crop of relatively high money value per acre and one that requires much hand labor it is poor economy to have the crop reduced in yield and quality for the lack of a few dollars' worth of additional fertilizer. An acre of good tobacco with the exception of one or two operations, can be grown with practically the same amount of labor that a poor crop requires.

With a view to determining as far as possible not only the proper rate of application, but the proportion in which the plant food elements, nitrogen, phosphorus and potassium should be combined and the source or sources of nitrogen and potash that
are best suited to the needs of the plant, the work with fertilizers for tobacco is divided into:

1. TOBACCO—GENERAL FERTILIZER EXPERIMENTS: This experiment consists of twenty plats on which different rates of application and different ratios of the three elements are used. The purpose of this experiment is to try to determine the best rate of application and the analysis that will give best results. Applications are made running from nothing at all to what is probably an over-supply of nitrogen, phosphorus and potassium.

2. TOBACCO—AMMONIA EXPERIMENTS: This series consists of twenty plats on which the most common sources of commercial nitrogen are used singly and in combination of two and three sources. Stable (Horse) manure is also used as a source of nitrogen and as a supplement to a complete fertilizer. In both cases gratifying results were obtained. The results of the past year would indicate the desirability of obtaining the nitrogen from several sources, three or more, rather than depending on one source for the entire amount.

3. TOBACCO—POTASH EXPERIMENTS: The potash work consists of nineteen plats on which the various sources of potash are used and in different rates of application.

While the use of potash in the sulphate form should be adhered to in order to insure good burning qualities of the tobacco, it is desirable to study the effect of potash derived from other sources on the growth and quality of the plant.

Tobacco is a heavy user of potash and in this series of tests the plats on which no potash was used gave practically nothing as the plants wasted away from disease or some physiological trouble and none of them reached normal maturity. The land used had been in cultivation for several years and on this type of soil a liberal application of potash seems absolutely essential.

In addition to the potash plats proper another set of plats
is being used on which the effect of the different elements other than potash (Magnesium, sulphur, chlorine and sodium) found in the various commercial sources of potash are being studied with interesting results.

VARIETY TESTS WITH TOBACCO: A test of the principal varieties of tobacco used in the bright tobacco belt is being made. This work will be continued with the addition of other varieties from time to time.

PLANT NUTRITION OR CROP RELATION WORK: This work consists of three hundred and ninety-two plats and involves a comprehensive study of the cropping effect, together with varied fertilizer treatments, of crops grown in rotation with tobacco. The principal field crops of the coastal plain area are being used.

The plan includes five fields on one of which cultivated crops are grown every year, two fields on which cultivated crops are followed by the small grains (wheat and oats), and two other fields on which cultivated crops are followed by small grains which are in turn followed by several of the most important legumes as cover crops.

In the field on which cultivated crops only are grown, tobacco follows tobacco, cotton, corn, peanuts, and sweet potatoes. The same is true of the other crops, each crop is planted continuously on one block of plats while on each succeeding block it follows one of the other crops.

Two fields are used for cultivated crops alternating with small grains, so that when one field is in cultivated crops the other is in small grains and vice-versa. Two similar fields are used for the same cultivated crops and small grains, but on these latter two fields legumes are planted after the small grains, using velvet beans, soy beans and cowpeas as summer cover crops.

It is believed that when these experiments have been run
for a period of years some interesting and worth-while results will have been obtained in regard to plant food requirements and to the effect that certain crops have on the soil when grown continuously or when grown in rotation with other crops.

HOGS.

A grazing system for hogs is being tested as follows:

1st. Period—Oats, rye and rape.
2nd. Period—Cattail millet and early amber sorghum.
3rd. Period—Spanish peanuts and early dent corn.

Respectfully submitted,

S. H. STARR, Director.
RESOLUTION.

Henry Harding Tift, the first Chairman of the Board of Trustees of the Georgia Coastal Plain Experiment Station, died in the eighty-first years of his life at his residence at Tifton at 2:22 o'clock Saturday, February 4th, 1922, after a short illness.

He was the son of Amos Chapman and Phoebe Harding Tift and was born at Mystic, Connecticut, March 16th, 1841. He attended the Connecticut Public Schools and completed a course at Greenwich Academy.

In 1872 Mr. Tift located a sawmill on the Brunswick and Albany Railroad (now the Atlantic Coast Line) at a point which was later named Tifton. He was a pioneer in the lumber business in this section and soon acquired 65,000 acres of timber lands. In extending his business operations he built logging roads that later became a part of the A., B. & A. Railroad. He became prominently identified with the development and operation of numerous industrial enterprises and subscribed largely to every worthy undertaking for public service or development of this section.

Mr. Tift gave generously to the cause of education and agricultural development. He contributed liberally toward the establishment of the Second District Agricultural School and served this institution as Chairman of the Board of Trustees for several years. He made large donations to Bessie Tift College at Forsyth and assisted many other educational and religious institutions.

The Governor appointed Mr. Tift a member of the Board of Trustees of the Georgia Coastal Plain Experiment Station on August 27th, 1918, shortly after the General Assembly passed an act establishing the station. At the first meeting of the Board of Trustees, on December 11th, 1918, he was elected Chairman, which office he held until his death. He very generously contributed toward the establishment of the Experiment Station and during his tenure of office gave untiringly of his
thought and energies toward developing it into an institution through which the farmers of the coastal plain could be benefited by the study and investigations of their problems.

Mr. Tift was always public spirited, broad-minded, a pioneer, builder and developer. His life was filled with busy days that were full of usefulness to his country and to his fellowman.

Reviewing his important contributions to the development of the State and his faithful services to the Experiment Station and in honor of his memory,

BE IT RESOLVED, by the Board of Trustees of the Georgia Coastal Plain Experiment Station:

That in the death of Captain H. H. Tift, the members of the Board have lost a true, distinguished and honored friend and fellow worker;

That the Experiment Station has lost a Chairman and member of the Board, whose vision, strength of character, administrative capacity, and unswerving devotion to the upbuilding of the station will always be gratefully remembered by his associates; whose wise and efficient services contributed in such a marked degree to the establishment and growth of the station into an institution of service; and whose life of high and honorable attainment and public service is a part of the enduring annals of the institution and of the State;

That we extend our sincerest sympathy and condolence to his widow, sons and other relatives and that this resolution be entered upon the minutes of the Board of Trustees and a copy sent to the press and to Mrs. Tift.

R. W. GOODMAN,
J. J. BROWN,
D. M. PARKER,

Committee of Board of Trustees.
#THIRD ANNUAL REPORT

##REPORT OF THE TREASURER FOR THE YEAR

ENDING DECEMBER 31, 1922.

###Receipts.

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan. 1st. Balance on hand</td>
<td>$12,782.74</td>
</tr>
<tr>
<td>Balance 1921 State Appropriations Rec’d in 1922</td>
<td>5,000.00</td>
</tr>
<tr>
<td>1922 State Appropriations</td>
<td>22,500.00</td>
</tr>
<tr>
<td>Farm and miscellaneous sales and refunds</td>
<td>1,564.95</td>
</tr>
<tr>
<td>Total Receipts</td>
<td>$41,847.69</td>
</tr>
</tbody>
</table>

###Disbursements.

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salaries</td>
<td>$8,199.96</td>
</tr>
<tr>
<td>Labor</td>
<td>5,113.55</td>
</tr>
<tr>
<td>Publications</td>
<td>280.15</td>
</tr>
<tr>
<td>Postage and stationery</td>
<td>300.01</td>
</tr>
<tr>
<td>Freight and express</td>
<td>250.58</td>
</tr>
<tr>
<td>Laboratory supplies</td>
<td>11.80</td>
</tr>
<tr>
<td>Seeds and plants</td>
<td>738.89</td>
</tr>
<tr>
<td>Supplies</td>
<td>1,945.25</td>
</tr>
<tr>
<td>Fertilizers</td>
<td>692.91</td>
</tr>
<tr>
<td>Library</td>
<td>83.50</td>
</tr>
<tr>
<td>Tools, implements and machinery</td>
<td>1,031.40</td>
</tr>
<tr>
<td>Furniture and fixtures</td>
<td>929.37</td>
</tr>
<tr>
<td>Scientific apparatus</td>
<td>3.25</td>
</tr>
<tr>
<td>Live stock</td>
<td>560.03</td>
</tr>
<tr>
<td>Traveling expenses</td>
<td>539.12</td>
</tr>
<tr>
<td>Contingent expenses</td>
<td>823.39</td>
</tr>
<tr>
<td>New buildings</td>
<td>16,600.00</td>
</tr>
<tr>
<td>Additions and alterations, buildings</td>
<td>562.70</td>
</tr>
<tr>
<td>Repairs buildings</td>
<td>324.85</td>
</tr>
<tr>
<td>Fences</td>
<td>116.12</td>
</tr>
<tr>
<td>Total Disbursements</td>
<td>$39,106.00</td>
</tr>
</tbody>
</table>

Balance on hand, December 31st, 1922 $ 2,741.69